Clifford A Pickover, "The Loom of God: Mathematical Tapestries at the Edge of Time", 1997 | |
"I do not know if God is a mathematician, but mathematics is the loom upon which God weaves the fabric of the universe. [...] The fact that reality can be described or approximated by simple mathematical expressions suggests to me that nature has mathematics at its core." | |
“In many ways, the mathematical quest to understand infinity parallels mystical attempts to understand God. Both religions and mathematics attempt to express the relationships between humans, the universe, and infinity. Both have arcane symbols and rituals, and impenetrable language. Both exercise the deep recesses of our mind and stimulate our imagination. Mathematicians, like priests, seek ‘ideal’, immutable, nonmaterial truths and then often try to apply theses truth in the real world.” | |
Fritjof Capra, "The Tao of Physics: An Exploration of the Parallels between Modern Physics and Eastern Mysticism", 1976 | |
“If physics leads us today to a world view which is essentially mystical, it returns, in a way, to its beginning, 2,500 years ago. […] Eastern thought and, more generally, mystical thought provide a consistent and relevant philosophical background to the theories of contemporary science; a conception of the world in which scientific discoveries can be in perfect harmony with spiritual aims and religious beliefs. The two basic themes of this conception are the unity and interrelation of all phenomena and the intrinsically dynamic nature of the universe. The further we penetrate into the submicroscopic world, the more we shall realize how the modern physicist, like the Eastern mystic, has come to see the world as a system of inseparable, interacting and ever-moving components with the observer being an integral part of this system.” | |
“Whenever the Eastern mystics express their knowledge in words - be it with the help of myths, symbols, poetic images or paradoxical statements-they are well aware of the limitations imposed by language and 'linear' thinking. Modern physics has come to take exactly the same attitude with regard to its verbal models and theories. They, too, are only approximate and necessarily inaccurate. They are the counterparts of the Eastern myths, symbols and poetic images, and it is at this level that I shall draw the parallels. The same idea about matter is conveyed, for example, to the Hindu by the cosmic dance of the god Shiva as to the physicist by certain aspects of quantum field theory. Both the dancing god and the physical theory are creations of the mind: models to describe their authors' intuition of reality.” | |
Mario Livio, "Is God a Mathematician?", 2011 | |
“The reality is that without mathematics, modern-day cosmologists could not have progressed even one step in attempting to understand the laws of nature. Mathematics provides the solid scaffolding that holds together any theory of the universe. […] Mathematics appears to be almost too effective in describing and explaining not only the cosmos at large, but even some of the most chaotic of human enterprises.” | |
“There are actually two sides to the success of mathematics in explaining the world around us (a success that Wigner dubbed ‘the unreasonable effectiveness of mathematics’), one more astonishing than the other. First, there is an aspect one might call ‘active’. When physicists wander through nature’s labyrinth, they light their way by mathematics—the tools they use and develop, the models they construct, and the explanations they conjure are all mathematical in nature. This, on the face of it, is a miracle in itself. […] But there is also a ‘passive’ side to the mysterious effectiveness of mathematics, and it is so surprising that the “active” aspect pales by comparison. Concepts and relations explored by mathematicians only for pure reasons—with absolutely no application in mind—turn out decades (or sometimes centuries) later to be the unexpected solutions to problems grounded in physical reality!” | |
Ian Stewart & Martin Golubitsky, “Fearful Symmetry: Is God a Geometer?”, 1992 | |
“Scientists use mathematics to build mental universes. They write down mathematical descriptions - models - that capture essential fragments of how they think the world behaves. Then they analyse their consequences. This is called 'theory'. They test their theories against observations: this is called 'experiment'. Depending on the result, they may modify the mathematical model and repeat the cycle until theory and experiment agree. Not that it's really that simple; but that's the general gist of it, the essence of the scientific method.” | |
“Nature behaves in ways that look mathematical, but nature is not the same as mathematics. Every mathematical model makes simplifying assumptions; its conclusions are only as valid as those assumptions.” | |
Peter Coles, “Hawking and the Mind of God”, 2000 | |
“[…] the search for a Theory of Everything also raises interesting philosophical questions. Some physicists, [Stephen] Hawking among them, would regard the construction of a Theory of Everything as being, in some sense, reading the mind of God. Or at least unravelling the inner secrets of physical reality. Others simply argue that a physical theory is just a description of reality, rather like a map.” | |
“To look at the development of physics since Newton is to observe a struggle to define the limits of science. Part of this process has been the intrusion of scientific methods and ideas into domains that have traditionally been the province of metaphysics or religion. In this conflict, Hawking’s phrase ‘to know the Mind of God’ is just one example of a border infringement. But by playing the God card, Hawking has cleverly fanned the flames of his own publicity, appealing directly to the popular allure of the scientist-as-priest.” Previous Post <<||>> Next Post |
Quotes and Resources Related to Mathematics, (Mathematical) Sciences and Mathematicians
12 December 2017
5 Books 10 Quotes II: Nature and the Quest for Models
Subscribe to:
Post Comments (Atom)
On Data: Longitudinal Data
"Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...
No comments:
Post a Comment