"As an operation, multiplication by i x i has the same effect as multiplication by -1; multiplication by i has the same effect as a rotation by a right angle, and these interpretations […] are consistent. […] Although the interpretation by means of rotations proves nothing, it may suggest that there is no occasion for anyone to muddle himself into a state of mystic wonderment over nothing about the grossly misnamed ‘imaginaries’." (Eric T Bell, "Gauss, the Prince of Mathematicians", 1956)
"The word ‘imaginary’ is the great algebraical calamity, but it is too well established for mathematicians to eradicate. It should never have been used. Books on elementary algebra give a simple interpretation of imaginary numbers in terms of rotations. […] Although the interpretation by means of rotations proves nothing, it may suggest that there is no occasion for anyone to muddle himself into a state of mystic wonderment over nothing about the grossly misnamed ‘imaginaries’." (Philip E B Jourdain, "The Nature of Mathematics" in [James R Newman, "The World of Mathematics" Vol. I, 1956])
"It is common knowledge today that in general a symmetry principle (or equivalently an invariance principle) generates a conservation law. For example, the invariance of physical laws under space displacement has as a consequence the conservation of momentum, the invariance under space rotation has as a consequence the conservation of angular momentum." (Chen-Ning Yang, "The Law of Parity Conservation and Other Symmetry Laws of Physics", [Nobel lecture] 1957)
"Every branch of geometry can be defined as the study of properties that are unaltered when a specified figure is given specified symmetry transformations. Euclidian plane geometry, for instance, concerns the study of properties that are 'invariant' when a figure is moved about on the plane, rotated, mirror reflected, or uniformly expanded and contracted. Affine geometry studies properties that are invariant when a figure is 'stretched' in a certain way. Projective geometry studies properties invariant under projection. Topology deals with properties that remain unchanged even when a figure is radically distorted in a manner similar to the deformation of a figure made of rubber." (Martin Gardner, "Aha! Insight", 1978)
"The search for fundamental symmetries boils down to the study of transformations that do not change fundamental physical action - such transformations as reflection, rotation, the Lorentz transformation, and the like." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)
"Unlike an architect, Nature does not go around expounding on the wondrous symmetries of Her design. Instead, theoretical physicists must deduce them. Some symmetries, such as parity and rotational invariances, are intuitively obvious. We expect Nature to possess these symmetries, and we are shocked if She does not. Other symmetries, such as Lorentz invariance and general covariance, are more subtle and not grounded in our everyday perceptions. But, in any case, in order to find out if Nature employs a certain symmetry, we must compare the implications of the symmetry with observation." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)
"In deterministic geometry, structures are defined, communicated, and analysed, with the aid of elementary transformations such as affine transfor- transformations, scalings, rotations, and congruences. A fractal set generally contains infinitely many points whose organization is so complicated that it is not possible to describe the set by specifying directly where each point in it lies. Instead, the set may be defined by "the relations between the pieces." It is rather like describing the solar system by quoting the law of gravitation and stating the initial conditions. Everything follows from that. It appears always to be better to describe in terms of relationships." (Michael Barnsley, "Fractals Everwhere", 1988)
"To a mathematician, an object possesses symmetry if it retains its form after some transformation. A circle, for example, looks the same after any rotation; so a mathematician says that a circle is symmetric, even though a circle is not really a pattern in the conventional sense - something made up from separate, identical bits. Indeed the mathematician generalizes, saying that any object that retains its form when rotated - such as a cylinder, a cone, or a pot thrown on a potter's wheel - has circular symmetry." (Ian Stewart & Martin Golubitsky,"Fearful Symmetry: Is God a Geometer?", 1992)
"How beautifully simple is Wessel’s idea. Multiplying by √-1 is, geometrically, simply a rotation by 90 degrees in the counter clockwise sense [...] Because of this property √-1 is often said to be the rotation operator, in addition to being an imaginary number. As one historian of mathematics has observed, the elegance and sheer wonderful simplicity of this interpretation suggests 'that there is no occasion for anyone to muddle himself into a state of mystic wonderment over the grossly misnamed ‘imaginaries'. This is not to say, however, that this geometric interpretation wasn’t a huge leap forward in human understanding. Indeed, it is only the start of a tidal wave of elegant calculations." (Paul J Nahin, "An Imaginary Tale: The History of √-1", 1998)
No comments:
Post a Comment