18 July 2020

On Causality (1800-1899)

"We know the effects of many things, but the causes of few; experience, therefore, is a surer guide than imagination, and inquiry than conjecture." (Charles C Colton, "Lacon", 1820)

"Primary causes are unknown to us; but are subject to simple and constant laws, which may be discovered by observation, the study of them being the object of natural philosophy." (Jean-Baptiste-Joseph Fourier, "The Analytical Theory of Heat", 1822)

"Things of all kinds are subject to a universal law which may be called the law of large numbers. It consists in the fact that, if one observes very considerable numbers of events of the same nature, dependent on constant causes and causes which vary irregularly, sometimes in one direction, sometimes in the other, it is to say without their variation being progressive in any definite direction, one shall find, between these numbers, relations which are almost constant." (Siméon-Denis Poisson, "Poisson’s Law of Large Numbers", 1837)

"Cause and effect, means and ends, seed and fruit cannot be severed; for the effect already blooms in the cause, the end preexists in the means, the fruit in the seed." (Ralph W Emerson, "Essays", 1841)

"An hypothesis being a mere supposition, there are no other limits to hypotheses than those of the human imagination; we may, if we please, imagine, by way of accounting for an effect, some cause of a kind utterly unknown, and acting according to a law altogether fictitious." (John S Mill, "A System of Logic, Ratiocinative and Inductive", 1843)

"The truth that every fact which has a beginning has a cause, is coextensive with human experience." (John S Mill, "System of Logic, Ratiocinative and Inductive", 1843)

"Causes are often disproportionate to effects." (Hannah F S Lee, "The Log Cabin, or, The World before You", 1844)

"First causes are outside the realm of science; they forever escape us in the sciences of living as well as in those of inorganic bodies." (Claude Bernard, "An Introduction to the Study of Experimental Medicine", 1865)

“Man’s mind cannot grasp the causes of events in their completeness, but the desire to find those causes is implanted in man’s soul. And without considering the multiplicity and complexity of the conditions any one of which taken separately may seem to be the cause, he snatches at the first approximation to a cause that seems to him intelligible and says: ‘This is the cause!’” (Leo Tolstoy, “War and Peace”, 1867)

"The accidental causes of science are only 'accidents' relatively to the intelligence of a man." (Chauncey Wright, "The Genesis of Species", North American Review, 1871)

"It is surprising to learn the number of causes of error which enter into the simplest experiment, when we strive to attain rigid accuracy." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"There is a maxim which is often quoted, that ‘The same causes will always produce the same effects.’ To make this maxim intelligible we must define what we mean by the same causes and the same effects, since it is manifest that no event ever happens more that once, so that the causes and effects cannot be the same in all respects. [...] There is another maxim which must not be confounded with that quoted at the beginning of this article, which asserts ‘That like causes produce like effects’. This is only true when small variations in the initial circumstances produce only small variations in the final state of the system. In a great many physical phenomena this condition is satisfied; but there are other cases in which a small initial variation may produce a great change in the final state of the system, as when the displacement of the ‘points’ causes a railway train to run into another instead of keeping its proper course." (James C Maxwell, "Matter and Motion", 1876)

"If statistical graphics, although born just yesterday, extends its reach every day, it is because it replaces long tables of numbers and it allows one not only to embrace at glance the series of phenomena, but also to signal the correspondences or anomalies, to find the causes, to identify the laws." (Émile Cheysson, cca. 1877)

"Before we can completely explain a phenomenon we require not only to find its true cause, its chief relations to other causes, and all the conditions which determine how the cause operates, and what its effect and amount of effect are, but also all the coincidences." (George Gore, "The Art of Scientific Discovery", 1878)

Previous Post <<||>> Next Post

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...