31 July 2020

Donald J Wheeler - Collected Quotes

"Averages, ranges, and histograms all obscure the time-order for the data. If the time-order for the data shows some sort of definite pattern, then the obscuring of this pattern by the use of averages, ranges, or histograms can mislead the user. Since all data occur in time, virtually all data will have a time-order. In some cases this time-order is the essential context which must be preserved in the presentation." (Donald J Wheeler," Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Before you can improve any system you must listen to the voice of the system (the Voice of the Process). Then you must understand how the inputs affect the outputs of the system. Finally, you must be able to change the inputs (and possibly the system) in order to achieve the desired results. This will require sustained effort, constancy of purpose, and an environment where continual improvement is the operating philosophy." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Data are collected as a basis for action. Yet before anyone can use data as a basis for action the data have to be interpreted. The proper interpretation of data will require that the data be presented in context, and that the analysis technique used will filter out the noise."  (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Data are generally collected as a basis for action. However, unless potential signals are separated from probable noise, the actions taken may be totally inconsistent with the data. Thus, the proper use of data requires that you have simple and effective methods of analysis which will properly separate potential signals from probable noise." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"No comparison between two values can be global. A simple comparison between the current figure and some previous value and convey the behavior of any time series. […] While it is simple and easy to compare one number with another number, such comparisons are limited and weak. They are limited because of the amount of data used, and they are weak because both of the numbers are subject to the variation that is inevitably present in weak world data. Since both the current value and the earlier value are subject to this variation, it will always be difficult to determine just how much of the difference between the values is due to variation in the numbers, and how much, if any, of the difference is due to real changes in the process." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"No matter what the data, and no matter how the values are arranged and presented, you must always use some method of analysis to come up with an interpretation of the data.
While every data set contains noise, some data sets may contain signals. Therefore, before you can detect a signal within any given data set, you must first filter out the noise." (Donald J Wheeler," Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Since the average is a measure of location, it is common to use averages to compare two data sets. The set with the greater average is thought to ‘exceed’ the other set. While such comparisons may be helpful, they must be used with caution. After all, for any given data set, most of the values will not be equal to the average." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"The purpose of analysis is insight. The best analysis is the simplest analysis which provides the needed insight." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"We analyze numbers in order to know when a change has occurred in our processes or systems. We want to know about such changes in a timely manner so that we can respond appropriately. While this sounds rather straightforward, there is a complication - the numbers can change even when our process does not. So, in our analysis of numbers, we need to have a way to distinguish those changes in the numbers that represent changes in our process from those that are essentially noise." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"When a system is predictable, it is already performing as consistently as possible. Looking for assignable causes is a waste of time and effort. Instead, you can meaningfully work on making improvements and modifications to the process. When a system is unpredictable, it will be futile to try and improve or modify the process. Instead you must seek to identify the assignable causes which affect the system. The failure to distinguish between these two different courses of action is a major source of confusion and wasted effort in business today." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"When a process displays unpredictable behavior, you can most easily improve the process and process outcomes by identifying the assignable causes of unpredictable variation and removing their effects from your process." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"While all data contain noise, some data contain signals. Before you can detect a signal, you must filter out the noise." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Without meaningful data there can be no meaningful analysis. The interpretation of any data set must be based upon the context of those data. Unfortunately, much of the data reported to executives today are aggregated and summed over so many different operating units and processes that they cannot be said to have any context except a historical one - they were all collected during the same time period. While this may be rational with monetary figures, it can be devastating to other types of data." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"[…] you simply cannot make sense of any number without a contextual basis. Yet the traditional attempts to provide this contextual basis are often flawed in their execution. [...] Data have no meaning apart from their context. Data presented without a context are effectively rendered meaningless.(Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Data analysis is not generally thought of as being simple or easy, but it can be. The first step is to understand that the purpose of data analysis is to separate any signals that may be contained within the data from the noise in the data. Once you have filtered out the noise, anything left over will be your potential signals. The rest is just details." (Donald J Wheeler," Myths About Data Analysis", International Lean & Six Sigma Conference, 2012)

"Descriptive statistics are built on the assumption that we can use a single value to characterize a single property for a single universe. […] Probability theory is focused on what happens to samples drawn from a known universe. If the data happen to come from different sources, then there are multiple universes with different probability models. If you cannot answer the homogeneity question, then you will not know if you have one probability model or many. [...] Statistical inference assumes that you have a sample that is known to have come from one universe." (Donald J Wheeler, "Myths About Data Analysis", International Lean & Six Sigma Conference, 2012)

"In order to be effective a descriptive statistic has to make sense - it has to distil some essential characteristic of the data into a value that is both appropriate and understandable. […] the justification for computing any given statistic must come from the nature of the data themselves - it cannot come from the arithmetic, nor can it come from the statistic. If the data are a meaningless collection of values, then the summary statistics will also be meaningless - no arithmetic operation can magically create meaning out of nonsense. Therefore, the meaning of any statistic has to come from the context for the data, while the appropriateness of any statistic will depend upon the use we intend to make of that statistic." (Donald J Wheeler, "Myths About Data Analysis", International Lean & Six Sigma Conference, 2012)

"The four questions of data analysis are the questions of description, probability, inference, and homogeneity. Any data analyst needs to know how to organize and use these four questions in order to obtain meaningful and correct results. [...] 
THE DESCRIPTION QUESTION: Given a collection of numbers, are there arithmetic values that will summarize the information contained in those numbers in some meaningful way?
THE PROBABILITY QUESTION: Given a known universe, what can we say about samples drawn from this universe? [...] 
THE INFERENCE QUESTION: Given an unknown universe, and given a sample that is known to have been drawn from that unknown universe, and given that we know everything about the sample, what can we say about the unknown universe? [...] 
THE HOMOGENEITY QUESTION: Given a collection of observations, is it reasonable to assume that they came from one universe, or do they show evidence of having come from multiple universes?" (Donald J Wheeler, "Myths About Data Analysis", International Lean & Six Sigma Conference, 2012)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...