25 December 2021

Geometrical Figures II: Triangles

"Philosophy is written in this grand book, the universe, which stands continually open to our gaze. But the book cannot be understood unless one first learns to comprehend the language and read the letters in which it is composed. It is written in the language of mathematics, and its characters are triangles, circles, and other geometric figures without which it is humanly impossible to understand a single word of it; without these, one wanders about in a dark labyrinth." (Galileo Galilei, "The Assayer", 1623)

"[…] the speculative propositions of mathematics do not relate to facts; […] all that we are convinced of by any demonstration in the science, is of a necessary connection subsisting between certain suppositions and certain conclusions. When we find these suppositions actually take place in a particular instance, the demonstration forces us to apply the conclusion. Thus, if I could form a triangle, the three sides of which were accurately mathematical lines, I might affirm of this individual figure, that its three angles are equal to two right angles; but as the imperfection of my senses puts it out of my power to be, in any case, certain of the exact correspondence of the diagram which I delineate, with the definitions given in the elements of geometry, I never can apply with confidence to a particular figure, a mathematical theorem." (Dugald Stewart, "Elements of the Philosophy of the Human Mind", 1792)

"Every process of what has been called Universal Geometry - the great creation of Descartes and his successors, in which a single train of reasoning solves whole classes of problems at once, and others common to large groups of them - is a practical lesson in the management of wide generalizations, and abstraction of the points of agreement from those of difference among objects of great and confusing diversity, to which the purely inductive sciences cannot furnish many superior. Even so elementary an operation as that of abstracting from the particular configuration of the triangles or other figures, and the relative situation of the particular lines or points, in the diagram which aids the apprehension of a common geometrical demonstration, is a very useful, and far from being always an easy, exercise of the faculty of generalization so strangely imagined to have no place or part in the processes of mathematics." (John S Mill, "An Examination of Sir William Hamilton’s Philosophy", 1865)

"It is indeed wonderful that so simple a figure as the triangle is so inexhaustible in properties. How many as yet unknown properties of other figures may there not be?" (August Creele, "School Science and Mathematics", 1905)

"Poetry is a sort of inspired mathematics, which gives us equations, not for abstract figures, triangles, squares, and the like, but for the human emotions. If one has a mind which inclines to magic rather than science, one will prefer to speak of these equations as spells or incantations; it sounds more arcane, mysterious, recondite. " (Ezra Pound, "The Spirit of Romance", 1910)

"The circle is the synthesis of the greatest oppositions. It combines the concentric and the eccentric in a single form and in equilibrium. Of the three primary forms [triangle, square, circle], it points most clearly to the fourth dimension." (Wassily Kandinsky, [letter] 1926)

"Nature does not seem full of circles and triangles to the ungeometrical; rather, mastery of the theory of triangles and circles, and later of conic sections, has taught the theorist, the experimenter, the carpenter, and even the artist to find them everywhere, from the heavenly motions to the pose of a Venus." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"In our times, geometers are still exploring those new Wonder-lands, partly for the sake of their applications to cosmology and other branches of science but much more for the sheer joy of passing through the looking glass into a land where the familiar lines, planes, triangles, circles, and spheres are seen to behave in strange but precisely determined ways." (Harold S M Coxeter, "Non-Euclidean Geometry", 1969)

"Geometry is the study of form and shape. Our first encounter with it usually involves such figures as triangles, squares, and circles, or solids such as the cube, the cylinder, and the sphere. These objects all have finite dimensions of length, area, and volume - as do most of the objects around us. At first thought, then, the notion of infinity seems quite removed from ordinary geometry. That this is not so can already be seen from the simplest of all geometric figures - the straight line. A line stretches to infinity in both directions, and we may think of it as a means to go 'far out' in a one-dimensional world." (Eli Maor, "To Infinity and Beyond: A Cultural History of the Infinite", 1987)

"Topology is a geometry in which all lengths, angles, and areas can be distorted at will. Thus a triangle can be continuously transformed into a rectangle, the rectangle into a square, the square into a circle, and so on. Similarly, a cube can be transformed into a cylinder, the cylinder into a cone, the cone into a sphere. Because of these continuous transformations, topology is known popularly as 'rubber sheet geometry'. All figures that can be transformed into each other by continuous bending, stretching, and twisting are called 'topologically equivalent'." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"A prime number, which exceeds a multiple of four by unity, is only once the hypotenuse of a right triangle." (Pierre de Fermat)

Geometrical Figures V: Spheres

"Two equal spheres are comprehended by one and the same cylinder, and two unequal spheres by one and the same cone which has its vertex in the direction of the lesser sphere; and the straight line drawn through the centres of the spheres is at right angles to each of the circles in which the surface of the cylinder, or of the cone, touches the spheres." (Aristarchus of Samos, "On the Sizes and Distances of the Sun and the Moon", cca. 250 BC)

"In order to know the curvature of a curve, the determination of the radius of the osculating circle furnishes us the best measure, where for each point of the curve we find a circle whose curvature is precisely the same. However, when one looks for the curvature of a surface, the question is very equivocal and not at all susceptible to an absolute response, as in the case above. There are only spherical surfaces where one would be able to measure the curvature, assuming the curvature of the sphere is the curvature of its great circles, and whose radius could be considered the appropriate measure. But for other surfaces one doesn’t know even how to compare a surface with a sphere, as when one can always compare the curvature of a curve with that of a circle. The reason is evident, since at each point of a surface there are an infinite number of different curvatures. One has to only consider a cylinder, where along the directions parallel to the axis, there is no curvature, whereas in the directions perpendicular to the axis, which are circles, the curvatures are all the same, and all other oblique sections to the axis give a particular curvature. It’s the same for all other surfaces, where it can happen that in one direction the curvature is convex, and in another it is concave, as in those resembling a saddle." (Leonhard Euler, "Recherches sur la courbure des surfaces", 1767)

"I take the word 'mapping' in the widest possible sense; any point of the spherical surface is represented on the plane by any desired rule, so that every point of the sphere corresponds to a specified point in the plane, and inversely." (Leonhard Euler, "On the representation of Spherical Surfaces onto the Plane", 1777)

"In the extension of space-construction to the infinitely great, we must distinguish between unboundedness and infinite extent; the former belongs to the extent relations, the latter to the measure-relations. That space is an unbounded threefold manifoldness, is an assumption which is developed by every conception of the outer world; according to which every instant the region of real perception is completed and the possible positions of a sought object are constructed, and which by these applications is forever confirming itself. The unboundedness of space possesses in this way a greater empirical certainty than any external experience. But its infinite extent by no means follows from this; on the other hand if we assume independence of bodies from position, and therefore ascribe to space constant curvature, it must necessarily be finite provided this curvature has ever so small a positive value. If we prolong all the geodesies starting in a given surface-element, we should obtain an unbounded surface of constant curvature, i.e., a surface which in a flat manifoldness of three dimensions would take the form of a sphere, and consequently be finite." (Bernhard Riemann, "On the hypotheses which lie at the foundation of geometry", 1854)

"[...]  the illustration of a space of constant positive measure of curvature by the familiar example of the sphere is somewhat misleading.  Owing to the fact that on the sphere the geodesic lines (great circles) issuing from any point all meet again in another definite point, antipodal, so to speak, to the original point, the existence of such an antipodal point has sometimes been regarded as a necessary consequence of the assumption of a constant positive curvature. The projective theory of non-Euclidean space shows immediately that the existence of an antipodal point, though compatible with the nature of an elliptic space, is not necessary, but that two geodesic lines in such a space may intersect in one point if at all." (Felix Klein, "The Most Recent Researches in Non-Euclidian Geometry", [lecture] 1893)

"Architecture is the masterly, correct and magnificent play of masses brought together in light. Our eyes are made to see forms in light; light and shade reveal these forms; cubes, cones, spheres, cylinders or pyramids are the great primary forms which light reveals to advantage; the image of these is distinct and tangible within us without ambiguity. It is for this reason that these are beautiful forms, the most beautiful forms. Everybody is agreed to that, the child, the savage and the metaphysician." (Charles-Edouard Jeanneret [Le Corbusier], "Towards a New Architecture", 1923)

"Rational mechanics is mathematics, just as geometry is mathematics. […] Mechanics cannot, any more than geometry, exhaust the properties of the physical universe. […] Mechanics presumes geometry and hence is more special; since it attributes to a sphere additional properties beyond its purely geometric ones, the mechanics of spheres is not only more complicated and detailed but also, on the grounds of pure logic, necessarily less widely applicable than geometry. This, again, is no reproach; geometry is not despised because it is less widely applicable than topology. A more complicated theory, such as mechanics, is less likely to apply to any given case; when it does apply, it predicts more than any broader, less specific theory." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"In our times, geometers are still exploring those new Wonder-lands, partly for the sake of their applications to cosmology and other branches of science but much more for the sheer joy of passing through the looking glass into a land where the familiar lines, planes, triangles, circles, and spheres are seen to behave in strange but precisely determined ways." (Harold S M Coxeter, "Non-Euclidean Geometry", 1969)

"The space of our universe is the hypersurface of a vast expanding hypersphere." (Rudy Rucker, "The Sex Sphere", 1983)

"Topology is that branch of mathematics which is interested in the forms of things aside from their size and shape. Two things are said to be topologically equivalent if one can be deformed smoothly into the other without sticking, cutting, or puncturing it in any way. Thus an egg is equivalent to a sphere." (John D Barrow, "Theories of Everything: The Quest for Ultimate Explanation", 1991)

"The digits of pi beyond the first few decimal places are of no practical or scientific value. Four decimal places are sufficient for the design of the finest engines; ten decimal places are sufficient to obtain the circumference of the earth within a fraction of an inch if the earth were a smooth sphere" (Petr Beckmann, "A History of Pi", 1976)

"Geometry is the study of form and shape. Our first encounter with it usually involves such figures as triangles, squares, and circles, or solids such as the cube, the cylinder, and the sphere. These objects all have finite dimensions of length, area, and volume - as do most of the objects around us. At first thought, then, the notion of infinity seems quite removed from ordinary geometry. That this is not so can already be seen from the simplest of all geometric figures - the straight line. A line stretches to infinity in both directions, and we may think of it as a means to go 'far out' in a one-dimensional world." (Eli Maor, "To Infinity and Beyond: A Cultural History of the Infinite", 1987)

"Topology is a geometry in which all lengths, angles, and areas can be distorted at will. Thus a triangle can be continuously transformed into a rectangle, the rectangle into a square, the square into a circle, and so on. Similarly, a cube can be transformed into a cylinder, the cylinder into a cone, the cone into a sphere. Because of these continuous transformations, topology is known popularly as 'rubber sheet geometry'. All figures that can be transformed into each other by continuous bending, stretching, and twisting are called 'topologically equivalent'." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"The true traditional doughnut has the topology of a sphere. It is a matter of taste whether one regards this as having separate internal and external surfaces. The important point is that the inner space should be filled with good raspberry jam. This is also a matter of taste." (Peter B Fellgett)

Geometrical Figures I: Circles

"Circles are to one another as the squares on their diameters." (Euclid, "Elemets", cca. 300 BC)

"Now discourse is necessarily limited by its point of departure and its point of arrival, and since these are in mutual opposition we speak of contradiction. For the discursive reason these terms are opposed and distinct. In the realm of the reason, therefore, there is a necessary disjunction between extremes, as, for example, in the rational definition of the circle where the lines from the center to the circumference are equal and where the center cannot coincide with the circumference." (Nicholas of Cusa, "Apologia Doctae ignorantiae" ["The Defense of Learned Ignorance"], 1449)

"Philosophy is written in this grand book, the universe, which stands continually open to our gaze. But the book cannot be understood unless one first learns to comprehend the language and read the letters in which it is composed. It is written in the language of mathematics, and its characters are triangles, circles, and other geometric figures without which it is humanly impossible to understand a single word of it; without these, one wanders about in a dark labyrinth." (Galileo Galilei, "The Assayer", 1623)

"The operations performed with imaginary characters, though destitute of meaning themselves, are yet notes of reference to others which are significant. They, point out indirectly a method of demonstrating a certain property of the hyperbola, and then leave us to conclude from analogy, that the same property belongs also to the circle. All that we are assured of by the imaginary investigation is, that its conclusion may, with all the strictness of mathematical reasoning, be proved of the hyperbola; but if from thence we would transfer that conclusion to the circle, it must be in consequence of the principle just now mentioned. The investigation therefore resolves itself ultimately into an argument from analogy; and, after the strictest examination, will be found without any other claim to the evidence of demonstration." (Robert Woodhouse," On the necessary Truth of certain Conclusions obtained by Means of imaginary Quantities", 1801)

"Beauty cannot be defined by abscissas and ordinates; neither are circles and ellipses created by their geometrical formulas." (Carl von Clausewitz, "On War", 1832)

"The circle is one of the noblest representation of the Deity, in his noble works of human nature. It bounds, determines, governs, and dictates bounds, dictates space, bounds latitude and longitude, refers to space, the sun, moon, and all the planets, in direction, brings to the mind thoughts of eternity, and concentrates the mind to imagine for itself the distance and space it comprehends. It rectifies all boundaries; it is the key to information of the knowledge of God." (John Davis, "The Measure of the Circle", 1854)

"This measure will and must prove a great benefit to mankind, when understood, as it is the basis and foundation of mathematical operations, for, without a perfect quadrature of the circle, measures, weighs, etc, must still remain hidden and unrevealed facts, which are and will be of great importance to rising generations." (John Davis, "The Measure of the Circle", 1854)

"Mathematics [...] would certainly have not come into existence if one had known from the beginning that there was in nature no exactly straight line, no actual circle, no absolute magnitude." (Friedrich Nietzsche, "Human, All Too Human", 1878)

"As Gauss first pointed out, the problem of cyclotomy, or division of the circle into a number of equal parts, depends in a very remarkable way upon arithmetical considerations. We have here the earliest and simplest example of those relations of the theory of numbers to transcendental analysis, and even to pure geometry, which so often unexpectedly present themselves, and which, at first sight, are so mysterious." (George B Mathews, "Theory of Numbers", 1892)

"Analytic functions are those that can be represented by a power series, convergent within a certain region bounded by the so-called circle of convergence. Outside of this region the analytic function is not regarded as given a priori ; its continuation into wider regions remains a matter of special investigation and may give very different results, according to the particular case considered." (Felix Klein, "Sophus Lie", [lecture] 1893)

"Infinity is the land of mathematical hocus pocus. There Zero the magician is king. When Zero divides any number he changes it without regard to its magnitude into the infinitely small [great?], and inversely, when divided by any number he begets the infinitely great [small?]. In this domain the circumference of the circle becomes a straight line, and then the circle can be squared. Here all ranks are abolished, for Zero reduces everything to the same level one way or another. Happy is the kingdom where Zero rules!" (Paul Carus, "The Nature of Logical and Mathematical Thought"; Monist Vol 20, 1910)

"And here is what makes this analysis situs interesting to us; it is that geometric intuition really intervenes there. When, in a theorem of metric geometry, one appeals to this intuition, it is because it is impossible to study the metric properties of a figure as abstractions of its qualitative properties, that is, of those which are the proper business of analysis situs. It has often been said that geometry is the art of reasoning correctly from badly drawn figures. This is not a capricious statement; it is a truth that merits reflection. But what is a badly drawn figure? It is what might be executed by the unskilled draftsman spoken of earlier; he alters the properties more or less grossly; his straight lines have disquieting zigzags; his circles show awkward bumps. But this does not matter; this will by no means bother the geometer; this will not prevent him from reasoning." (Henri Poincaré, "Dernières pensées", 1913)

"But it is a third geometry from which quantity is completely excluded and which is purely qualitative; this is analysis situs. In this discipline, two figures are equivalent whenever one can pass from one to the other by a continuous deformation; whatever else the law of this deformation may be, it must be continuous. Thus, a circle is equivalent to an ellipse or even to an arbitrary closed curve, but it is not equivalent to a straight-line segment since this segment is not closed. A sphere is equivalent to any convex surface; it is not equivalent to a torus since there is a hole in a torus and in a sphere there is not. Imagine an arbitrary design and a copy of this same design executed by an unskilled draftsman; the properties are altered, the straight lines drawn by an inexperienced hand have suffered unfortunate deviations and contain awkward bends. From the point of view of metric geometry, and even of projective geometry, the two figures are not equivalent; on the contrary, from the point of view of analysis situs, they are.” (Henri Poincaré, “Dernières pensées”, 1913)

"The number was first studied in respect of its rationality or irrationality, and it was shown to be really irrational. When the discovery was made of the fundamental distinction between algebraic and transcendental numbers, i. e. between those numbers which can be, and those numbers which cannot be, roots of an algebraical equation with rational coefficients, the question arose to which of these categories the number π belongs. It was finally established by a method which involved the use of some of the most modern of analytical investigation that the number π was transcendental. When this result was combined with the results of a critical investigation of the possibilities of a Euclidean determination, the inferences could be made that the number π, being transcendental, does not admit of a construction either by a Euclidean determination, or even by a determination in which the use of other algebraic curves besides the straight line and the circle are permitted." (Ernest W Hobson, "Squaring the Circle", 1913)

"The circle is the synthesis of the greatest oppositions. It combines the concentric and the eccentric in a single form and in equilibrium. Of the three primary forms [triangle, square, circle], it points most clearly to the fourth dimension." (Wassily Kandinsky, [letter] 1926)

"A circle no doubt has a certain appealing simplicity at the first glance, but one look at a healthy ellipse should have convinced even the most mystical of astronomers that that the perfect simplicity of the circle is akin to the vacant smile of complete idiocy. Compared to what an ellipse can tell us, a circle has nothing to say." (Eric T Bell, "The Handmaiden of the Sciences", 1937)

"The squaring of the circle is a stage on the way to the unconscious, a point of transition leading to a goal lying as yet unformulated beyond it. It is one of those paths to the centre." (Carl G Jung, "Psychology and Alchemy", 1944)

"The diagrams and circles aid the understanding by making it easy to visualize the elements of a given argument. They have considerable mnemonic value […] They have rhetorical value, not only arousing interest by their picturesque, cabalistic character, but also aiding in the demonstration of proofs and the teaching of doctrines. It is an investigative and inventive art. When ideas are combined in all possible ways, the new combinations start the mind thinking along novel channels and one is led to discover fresh truths and arguments, or to make new inventions. Finally, the Art possesses a kind of deductive power." (Martin Gardner, "Logic Machines and Diagrams", 1958)

"Nature does not seem full of circles and triangles to the ungeometrical; rather, mastery of the theory of triangles and circles, and later of conic sections, has taught the theorist, the experimenter, the carpenter, and even the artist to find them everywhere, from the heavenly motions to the pose of a Venus." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"Two kinds of sets turn up in geometry. First of all, in geometry we ordinarily talk about the properties of some set of geometric figures. For example, the theorem stating that the diagonals of a parallelogram bisect each other relates to the set of all parallelograms. Secondly, the geometric figures are themselves sets composed of the points occurring within them. We can therefore speak of the set of all points contained within a given circle, of the set of all points within a given cone, etc." (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"In our times, geometers are still exploring those new Wonder-lands, partly for the sake of their applications to cosmology and other branches of science but much more for the sheer joy of passing through the looking glass into a land where the familiar lines, planes, triangles, circles, and spheres are seen to behave in strange but precisely determined ways." (Harold S M Coxeter, "Non-Euclidean Geometry", 1969)

"Pure mathematics are concerned only with abstract propositions, and have nothing to do with the realities of nature. There is no such thing in actual existence as a mathematical point, line or surface. There is no such thing as a circle or square. But that is of no consequence. We can define them in words, and reason about them. We can draw a diagram, and suppose that line to be straight which is not really straight, and that figure to be a circle which is not strictly a circle. It is conceived therefore by the generality of observers, that mathematics is the science of certainty." (William Godwin, "Thoughts on Man", 1969)

"The Squaring of the Circle is of great importance to the geometer-cosmologist because for him the circle represents pure, unmanifest spirit-space, while the square represents the manifest and comprehensible represents world. When a near-equality is drawn between the circle and square, the infinite is able to express its dimensions or qualities through the finite." (Robert Lawlor, "Sacred Geometry", 1982)

"Geometry is the study of form and shape. Our first encounter with it usually involves such figures as triangles, squares, and circles, or solids such as the cube, the cylinder, and the sphere. These objects all have finite dimensions of length, area, and volume - as do most of the objects around us. At first thought, then, the notion of infinity seems quite removed from ordinary geometry. That this is not so can already be seen from the simplest of all geometric figures - the straight line. A line stretches to infinity in both directions, and we may think of it as a means to go 'far out' in a one-dimensional world." (Eli Maor, "To Infinity and Beyond: A Cultural History of the Infinite", 1987)

"Nature is never perfectly symmetric. Nature's circles always have tiny dents and bumps. There are always tiny fluctuations, such as the thermal vibration of molecules. These tiny imperfections load Nature's dice in favour of one or other of the set of possible effects that the mathematics of perfect symmetry considers to be equally possible." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"To a mathematician, an object possesses symmetry if it retains its form after some transformation. A circle, for example, looks the same after any rotation; so a mathematician says that a circle is symmetric, even though a circle is not really a pattern in the conventional sense - something made up from separate, identical bits. Indeed the mathematician generalizes, saying that any object that retains its form when rotated - such as a cylinder, a cone, or a pot thrown on a potter's wheel - has circular symmetry." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"Topology deals with those properties of curves, surfaces, and more general aggregates of points that are not changed by continuous stretching, squeezing, or bending. To a topologist, a circle and a square are the same, because either one can easily be bent into the shape of the other. In three dimensions, a circle and a closed curve with an overhand knot in it are topologically different, because no amount of bending, squeezing, or stretching will remove the knot." (Edward N Lorenz, "The Essence of Chaos", 1993)

"There are a variety of swarm topologies, but the only organization that holds a genuine plurality of shapes is the grand mesh. In fact, a plurality of truly divergent components can only remain coherent in a network. No other arrangement-chain, pyramid, tree, circle, hub-can contain true diversity working as a whole. This is why the network is nearly synonymous with democracy or the market." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"Math has its own inherent logic, its own internal truth. Its beauty lies in its ability to distill the essence of truth without the messy interference of the real world. It’s clean, neat, above it all. It lives in an ideal universe built on the geometer’s perfect circles and polygons, the number theorist’s perfect sets. It matters not that these objects don’t exist in the real world. They are articles of faith." (K C Cole, "The Universe and the Teacup: The Mathematics of Truth and Beauty", 1997)

"Just as a circle is the shape of periodicity, a strange attractor is the shape of chaos. It lives in an abstract mathematical space called state space, whose axes represent all the different variables in a physical system." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"[…] topology, the study of continuous shape, a kind of generalized geometry where rigidity is replaced by elasticity. It's as if everything is made of rubber. Shapes can be continuously deformed, bent, or twisted, but not cut - that's never allowed. A square is topologically equivalent to a circle, because you can round off the corners. On the other hand, a circle is different from a figure eight, because there's no way to get rid of the crossing point without resorting to scissors. In that sense, topology is ideal for sorting shapes into broad classes, based on their pure connectivity." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"A mathematical circle, then, is something more than a shared delusion. It is a concept endowed with extremely specific features; it 'exists' in the sense that human minds can deduce other properties from those features, with the crucial caveat that if two minds investigate the same question, they cannot, by correct reasoning, come up with contradictory answers." (Ian Stewart, "Letters to a Young Mathematician", 2006)

"A mathematician is someone who sees opportunities for doing mathematics." (Ian Stewart, "Letters to a Young Mathematician", 2006)

"Double periodicity is more interesting than single periodicity, because it is more varied. There is really only one periodic line, since all circles are the same up to a scale factor. However, there are infinitely many doubly periodic planes, even if we ignore scale. This is because the angle between the two periodic axes can vary, and so can the ratio of period lengths. The general picture of a doubly periodic plane is given by a lattice in the plane of complex numbers: a set of points of the form mA + nB, where A and B are nonzero complex numbers in different directions from O, and m and n run through all the integers. A and B are said to generate the lattice because it consists of all their sums and differences. […] The shape of the lattice of points mA + nB can therefore be represented by the complex number A/B. It is not hard to see that any nonzero complex number represents a lattice shape, so in some sense there is whole plane of lattice shapes. Even more interesting: the plane of lattice shapes is a periodic plane, because different numbers represent the same lattice." (John Stillwell, "Yearning for the Impossible: The Surprising Truths of Mathematics", 2006)

"Since the ellipse is a closed curve it has a total length, λ say, and therefore f(l + λ) = f(l). The elliptic function f is periodic, with 'period' λ, just as the sine function is periodic with period 2π. However, as Gauss discovered in 1797, elliptic functions are even more interesting than this: they have a second, complex period. This discovery completely changed the face of calculus, by showing that some functions should be viewed as functions on the plane of complex numbers. And just as periodic functions on the line can be regarded as functions on a periodic line - that is, on the circle - elliptic functions can be regarded as functions on a doubly periodic plane - that is, on a 2-torus." (John Stillwell, "Yearning for the impossible: the surpnsing truths of mathematics", 2006) 

"The mathematician's circle, with its infinitely thin circumference and a radius that remains constant to infinitely many decimal places, cannot take physical form. If you draw it in sand, as Archimedes did, its boundary is too thick and its radius too variable." (Ian Stewart, "Letters to a Young Mathematician", 2006)

"The engineer and the mathematician have a completely different understanding of the number pi. In the eyes of an engineer, pi is simply a value of measurement between three and four, albeit fiddlier than either of these whole numbers. [...] Mathematicians know the number pi differently, more intimately. What is pi to them? It is the length of a circle’s round line (its circumference) divided by the straight length (its diameter) that splits the circle into perfect halves. It is an essential response to the question, ‘What is a circle?’ But this response – when expressed in digits – is infinite: the number has no last digit, and therefore no last-but-one digit, no antepenultimate digit, no third-from-last digit, and so on." (Daniel Tammet, "Thinking in Numbers" , 2012)

"Topology is a geometry in which all lengths, angles, and areas can be distorted at will. Thus a triangle can be continuously transformed into a rectangle, the rectangle into a square, the square into a circle, and so on. Similarly, a cube can be transformed into a cylinder, the cylinder into a cone, the cone into a sphere. Because of these continuous transformations, topology is known popularly as 'rubber sheet geometry'. All figures that can be transformed into each other by continuous bending, stretching, and twisting are called 'topologically equivalent'." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"Why do mathematicians care so much about pi? Is it some kind of weird circle fixation? Hardly. The beauty of pi, in part, is that it puts infinity within reach. Even young children get this. The digits of pi never end and never show a pattern. They go on forever, seemingly at random - except that they can’t possibly be random, because they embody the order inherent in a perfect circle. This tension between order and randomness is one of the most tantalizing aspects of pi." (Steven Strogatz, "Why PI Matters" 2015)

"Raising e to an imaginary-number power can be pictured as a rotation operation in the complex plane. Applying this interpretation to e raised to the 'i times π' power means that Euler’s formula can be pictured in geometric terms as modeling a half-circle rotation." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)

"The most remarkable thing about π, however, is the way it turns up all over the place in math, including in calculations that seem to have nothing to do with circles." (David Stipp, “A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics”, 2017)

"Because of the geometry of a circle, there’s always a quarter-cycle off set between any sine wave and the wave derived from it as its derivative, its rate of change. In this analogy, the point’s direction of travel is like its rate of change. It determines where the point will go next and hence how it changes its location. Moreover, this compass heading of the arrow itself rotates in a circular fashion at a constant speed as the point goes around the circle, so the compass heading of the arrow follows a sine-wave pattern in time. And since the compass heading is like the rate of change, voilà! The rate of change follows a sine-wave pattern too." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"Mathematically, circles embody change without change. A point moving around the circumference of a circle changes direction without ever changing its distance from a center. It’s a minimal form of change, a way to change and curve in the slightest way possible. And, of course, circles are symmetrical. If you rotate a circle about its center, it looks unchanged. That rotational symmetry may be why circles are so ubiquitous. Whenever some aspect of nature doesn’t care about direction, circles are bound to appear. Consider what happens when a raindrop hits a puddle: tiny ripples expand outward from the point of impact. Because they spread equally fast in all directions and because they started at a single point, the ripples have to be circles. Symmetry demands it." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"In geometry, shapes like circles and polyhedra are rigid objects; the tools of the trade are lengths, angles and areas. But in topology, shapes are flexible things, as if made from rubber. A topologist is free to stretch and twist a shape. Even cutting and gluing are allowed, as long as the cut is precisely reglued. A sphere and a cube are distinct geometric objects, but to a topologist, they’re indistinguishable." (David E Richeson, "Topology 101: The Hole Truth", 2021) [source]

"The attempt to apply rational arithmetic to a problem in geometry resulted in the first crisis in the history of mathematics. The two relatively simple problems - the determination of the diagonal of a square and that of the circumference of a circle - revealed the existence of new mathematical beings for which no place could be found within the rational domain." (Tobias Dantzig)

"We ought either to exclude all lines, beside the circle and right line, out of geometry, or admit them according to the simplicity of their descriptions, in which case the Conchoid yields to none except the circle. That is arithmetically more simple which is determined by the more simple equations, but that is geometrically more simple which is determined by the more simple drawing of lines." (Sir Isaac Newton)

Figurative Figures I: Circles

"[...] because the origin of arts and sciences is to be considered according to the present revolution of the universe, we must affirm, in conformity with the most general tradition, that geometry was first invented by the Egyptians, deriving its origin from the mensuration of their fields: since this, indeed, was necessary to them, on account of the inundation of the Nile washing away the boundaries of land belonging to each. Nor ought It to seem wonderful, that the invention of this as well as of other sciences, should receive its commencement from convenience and opportunity. Since whatever is carried in the circle of generation proceeds from the imperfect to the perfect." (Proclus Lycaeus, cca 5th century)

"Many errors, of a truth, consist merely in the application of the wrong names of things. For if a man says that the lines which are drawn from the centre of the circle to the circumference are not equal, he understands by the circle, at all events for the time, something else than mathematicians understand by it." (Baruch Spinoza, "Ethics", Book I, 1677)

"Each of the parts of philosophy is a philosophical whole, a circle rounded and complete in itself. In each of these parts, however, the philosophical Idea is found in a particular specificality or medium. The single circle, because it is a real totality, bursts through the limits imposed by its special medium, and gives rise to a wider circle. The whole of philosophy in this way resembles a circle of circles. The Idea appears in each single circle, but, at the same time, the whole Idea is constituted by the system of these peculiar phases, and each is a necessary member of the organisation." (Georg W F Hegel, "Encyclopedia of the Philosophical Sciences", 1816)

"The life of a man is a self-evolving circle, which, from a ring imperceptibly small, rushes on all sides outwards to new and larger circles, and that without end. The extent to which this generation of circles, wheel without wheel, will go, depends on the force or truth of the individual soul." (Ralph W Emerson, "Circles", 1841)

"The generalizations of science sweep on in ever-widening circles, and more aspiring flights, through limitless creation." (Thomas H Huxley, [letter] 1859)

"Few will deny that even in the first scientific instruction in mathematics the most rigorous method is to be given preference over all others. Especially will every teacher prefer a consistent proof to one which is based on fallacies or proceeds in a vicious circle, indeed it will be morally impossible for the teacher to present a proof of the latter kind consciously and thus in a sense deceive his pupils. Notwithstanding these objectionable so-called proofs, so far as the foundation and the development of the system is concerned, predominate in our textbooks to the present time. Perhaps it will be answered, that rigorous proof is found too difficult for the pupil’s power of comprehension. Should this be anywhere the case, - which would only indicate some defect in the plan or treatment of the whole, - the only remedy would be to merely state the theorem in a historic way, and forego a proof with the frank confession that no proof has been found which could be comprehended by the pupil; a remedy which is ever doubtful and should only be applied in the case of extreme necessity. But this remedy is to be preferred to a proof which is no proof, and is therefore either wholly unintelligible to the pupil, or deceives him with an appearance of knowledge which opens the door to all superficiality and lack of scientific method." (Hermann G Grassmann, "Stücke aus dem Lehrbuche der Arithmetik", 1861)

"Everything in nature is a puzzle until it finds its solution in man, who solves it in some way with God, and so completes the circle of creation." (Theodore T Munger, "The Appeal to Life", 1891)

"The study of mathematics - from ordinary reckoning up to the higher processes - must be connected with knowledge of nature, and at the same time with experience, that it may enter the pupil’s circle of thought." (Johann F Herbart, "Letters and Lectures on Education", 1908)

"Human knowledge is not (or does not follow) a straight line, but a curve, which endlessly approximates a series of circles, a spiral. Any fragment, segment, section of this curve can be transformed (transformed one-sidedly) into an independent, complete, straight line [...]" (Vladimir I Lenin, "On the Question of Dialectics", 1915)

"But the star-glistered salver of infinity, The circle, blind crucible of endless space, Is sluiced by motion,-subjugated never." (Hart Crane. "The Bridge", 1930)

"Pure mathematics is, in its way, the poetry of logical ideas. One seeks the most general ideas of operation which will bring together in simple, logical and unified form the largest possible circle of formal relationships. In this effort toward logical beauty spiritual formulas are discovered necessary for the deeper penetration into the laws of nature." (Albert Einstein, [Obituary for Emmy Noether], 1935)

"As our mental eye penetrates into smaller and smaller distances and shorter and shorter times, we find nature behaving so entirely differently from what we observe in visible and palpable bodies of our surroundings that no model shaped after our large-scale experiences can ever be ‘true’. A complete satisfactory model of this type is not only practically inaccessible, but not even thinkable. Or, to be precise, we can, of course, think of it, but however we think it, it is wrong; not perhaps quite as meaningless as a ‘triangular circle’, but more so than a ‘winged lion’." (Erwin Schrödinger, "Science and Humanism", 1952)

"The inner circle of creative mathematicians have the well-kept trade secret that in a great many cases theorems come first and axioms second." (Carl B Allendoerfer, "The Narrow Mathematician", The American Mathematical Monthly, 1962)

"As mechanics is the science of motions and forces, so thermodynamics is the science of forces and entropy. What is entropy? Heads have split for a century trying to define entropy in terms of other things. Entropy, like force, is an undefined object, and if you try to define it, you will suffer the same fate as the force definers of the seventeenth and eighteenth centuries: Either you will get something too special or you will run around in a circle." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"Unless we can explain the mind in terms of things that have no thoughts or feelings of their own, we'll only have gone around in a circle." (Marvin Minsky, "The Society of Mind", 1987) 

"We move from part to whole and back again, and in that dance of comprehension, in that amazing circle of understanding, we come alive to meaning, to value, and to vision: the very circle of understanding guides our way, weaving together the pieces, healing the fractures, mending the torn and tortured fragments, lighting the way ahead - this extraordinary movement from part to whole and back again, with healing the hallmark of each and every step, and grace the tender reward." (Ken Wilber, "The Eye of Spirit: An Integral Vision for a World Gone Slightly Mad", 1997)

"Our simplistic cause-effect analyses, especially when coupled with the desire for quick fixes, usually lead to far more problems than they solve - impatience and knee-jerk reactions included. If we stop for a moment and take a good look our world and its seven levels of complex and interdependent systems, we begin to understand that multiple causes with multiple effects are the true reality, as are circles of causality-effects." (Stephen G Haines, "The Managers Pocket Guide to Systems Thinking & Learning", 1998)

"Like works of literature, mathematical ideas help expand our circle of empathy, liberating us from the tyranny of a single, parochial point of view. Numbers, properly considered, make us better people." (Daniel Tammet, "Thinking in Numbers", 2012)

"Ideas of simplicity, perfection, balance, harmony, purity, and beauty are not hard to derive from the symmetrical stability of a circle, the simplest of all geometric shapes. [...] The impression of purity and virtue might also explain why this evocative shape has been used in the iconography of major religions [...]. Another popular association with the circle is the concept of unity, wholeness, completeness, inclusion, or containment. This follows naturally from the form of a circle, a joined curve that creates two areas: interior versus exterior, inclusion versus exclusion. As such, the circle powerfully embodies ideas of boundary." (Manuel Lima, "The Book of Circle: Visualizing Spheres of Knowledge", 2017)

"The circle is a powerful symbol of generative force, associated over the ages with ideas of movement, rotation, transformation, cyclicality, and periodicity. A circle can be described as the curve drawn by a moving point revolving at a constant distance around a stationary point. This definition is central to the idea of rotation implicit in the circle and reinforced by one of the circle's inescapable manifestations, the wheel." (Manuel Lima, "The Book of Circle: Visualizing Spheres of Knowledge", 2017)

"If full knowledge about the very base of our existence could be described as a circle, the best we can do is to arrive at a polygon." (Nicholas of Cusa)

"Just as the stone thrown into the water becomes the centre and cause of various circles, [so] the sound made in the air spreads out in circles and fills the surrounding parts with an infinite number of images of itself." (Leonardo da Vinci)

"The squaring of the circle is a stage on the way to the unconscious, a point of transition leading to a goal lying as yet unformulated beyond it. It is one of those paths to the centre." (Carl G Jung)

23 December 2021

On Mysticism III: Physics & Mysticism I

"It is in fact wonderful how physics - as soon as it is concerned not with technical purposes but with general results - without knowing it gets into cosmogony, astrology, theosophy, or whatever you wish to call it, in short, into a mystic discipline of the whole." (K W Friedrich Schlegel, "Dialogue on Poetry and Literary Aphorisms", cca. 1797–1800)

"The idea of an atom has been so constantly associated with incredible assumptions of infi nite strength, absolute rigidity, mystical actions at a distance and indivisibility, that chemists and many other reasonable naturalists of modern times, losing all patience with it, have dismissed it to the realms of metaphysics, and made it smaller than 'anything we can conceive'." (William T Kelvin, "On the Size of Atoms", Nature Vol. 1, 1870)

"[...] in the present-day reconstruction of physics, fragments of the Newtonian concepts are stubbornly retained. The result is to reduce modern physics to a sort of mystic chant over an unintelligible universe." (Alfred N Whitehead, "Modes of Thought", 1938)

"Whenever the Eastern mystics express their knowledge in words - be it with the help of myths, symbols, poetic images or paradoxical statements-they are well aware of the limitations imposed by language and 'linear' thinking. Modern physics has come to take exactly the same attitude with regard to its verbal models and theories. They, too, are only approximate and necessarily inaccurate. They are the counterparts of the Eastern myths, symbols and poetic images, and it is at this level that I shall draw the parallels. The same idea about matter is conveyed, for example, to the Hindu by the cosmic dance of the god Shiva as to the physicist by certain aspects of quantum field theory. Both the dancing god and the physical theory are creations of the mind: models to describe their authors' intuition of reality." (Fritjof Capra, "The Tao of Physics: An Exploration of the Parallels Between Modern Physics and Eastern Mysticism", 1975)

"The conceptual framework of quantum mechanics, supported by massive volumes of experimental data, forces contemporary physicists to express themselves in a manner that sounds, even to the uninitiated, like the language of mystics." (Gary Zukav, "The Dancing Wu Li Masters", 1979)

"An aura of mysticism still surrounds the concept that has since been called 'imaginary numbers', and anyone who encounters these numbers for the first time is intrigued by their strange properties. But 'strange' is relative: with sufficient familiarity, the strange object of yesterday becomes the common thing of today." (Eli Maor, "e: The Story of a Number", 1994)

"The universe of Eastern mysticism is an illusion, A physicist who attempts to link it with his own work has abandoned physics." (Stephen Hawking)

On Mysticism II: Science & Mysticism I

"So, the vast results obtained by Science are won by no mystical faculties, by no mental processes, other than those which are practised by every one of us, in the humblest and meanest affairs of life." (Thomas H Huxley, "Science and Education", 1891)

"Metaphysics, or the attempt to conceive the world as a whole by means of thought, has been developed, from the first, by the union and conflict of two very different human impulses, the one urging men towards mysticism, the other urging them towards science." (Bertrand Russell, "Mysticism and Logic: And Other Essays", 1919)

"One has to recognize that science is not metaphysics, and certainly not mysticism; it can never bring us the illumination and the satisfaction experienced by one enraptured in ecstasy. Science is sobriety and clarity of conception, not intoxicated vision." (Ludwig Von Mises, "Epistemological Problems of Economics", 1933)

"It is his intuition, his mystical insight into the nature of things, rather than his reasoning which makes a great scientist." (Karl R Popper, "The Open Society and Its Enemies", 1945)

"To be a scientist - it is not just a different job so that a man should choose between being a scientist and being an explorer or a bond-salesman or a physician or a king or a farmer. It is a tangle of very obscure emotions, like mysticism, or wanting to write poetry; it makes its victim all different from the good natural man." (Sinclair Lewis, "Arrowsmith", 1952)

"Nominally a great age of scientific inquiry, ours has actually become an age of superstition about the infallibility of science; of almost mystical faith in its nonmystical methods; above all [...] of external verities; of traffic-cop morality and rabbit-test truth." (Louis Kronenberger, "Company Manners: A Cultural Inquiry into American Life", 1954)

"The experience of science - to stub your toe hard and then notice that it was really a rock on which you stubbed it - this experience is something that is hard to communicate by popularization, by education, or by talk. It is almost as hard to tell a man what it is like to find out something new about the world as it is to describe a mystical experience to a chap who has never had any hint of such an experience." (J Robert Oppenheimer, "The Open Mind", 1955)

"Science does not need mysticism and mysticism does not need science, but man needs both. Mystical experience is necessary to understand the deepest nature of things, and science is essential for modern life. What we need, therefore, is not a synthesis, but a dynamic interplay between mystical intuition and scientific analysis." (Fritjof Capra, "The Tao of Physics: An Exploration of the Parallels Between Modern Physics and Eastern Mysticism", 1975)

"There is no such thing as a Scientific Mind. Scientists are people of very dissimilar temperaments doing different things in very different ways. Among scientists are collectors, classifiers and compulsive tidiers-up; many are detectives by temperament and many are explorers; some are artists and others artisans. There are poet-scientists and philosopher-scientists and even a few mystics. What sort of mind or temperament can all these people be supposed to have in common? Obligative scientists must be very rare, and most people who are in fact scientists could easily have been something else instead." (Sir Peter B Medawar, "Pluto’s Republic: Incorporating the Art of the Soluble and Induction Intuition in Scientific Thought", 1982)

"[...] in science there are collectors, classifiers, compulsory tidiers-up and permanent contesters, detectives, some artists and many artisans, there are poet-scientists and philosophers and even a few mystics." (Rolf M Zinkernagel, [Nobel lecture] 1996)

20 December 2021

On Mysticism I: Mathematics & Mysticism I

"All things began in order, so shall they end, and so shall they begin again; according to the ordainer of order and mystical mathematics of the city of heaven." (Sir Thomas Browne, "The Garden of Cyrus", 1658)

"There is a famous formula, perhaps the most compact and famous of all formulas developed by Euler from a discovery of de Moivre: It appeals equally to the mystic, the scientist, the philosopher, the mathematician." (Edward Kasner & James R Newman, "Mathematics and the Imagination", 1940)

"The word ‘imaginary’ is the great algebraical calamity, but it is too well established for mathematicians to eradicate. It should never have been used. Books on elementary algebra give a simple interpretation of imaginary numbers in terms of rotations. […] Although the interpretation by means of rotations proves nothing, it may suggest that there is no occasion for anyone to muddle himself into a state of mystic wonderment over nothing about the grossly misnamed ‘imaginaries’." (Philip E B Jourdain, "The Nature of Mathematics" in [James R Newman, “The World of Mathematics” Vol. I, 1956])

"A real number that satisfies (is a solution of) a polynomial equation with integer coefficients is called algebraic. […] A real number that is not algebraic is called transcendental. There is nothing mystic about this word; it merely indicates that these numbers transcend (go beyond) the realm of algebraic numbers."  (Eli Maor, "e: The Story of a Number", 1994)

"An aura of mysticism still surrounds the concept that has since been called 'imaginary numbers', and anyone who encounters these numbers for the first time is intrigued by their strange properties. But 'strange' is relative: with sufficient familiarity, the strange object of yesterday becomes the common thing of today." (Eli Maor, "e: The Story of a Number", 1994)

"In many ways, the mathematical quest to understand infinity parallels mystical attempts to understand God. Both religions and mathematics attempt to express the relationships between humans, the universe, and infinity. Both have arcane symbols and rituals, and impenetrable language. Both exercise the deep recesses of our mind and stimulate our imagination. Mathematicians, like priests, seek ‘ideal’, immutable, nonmaterial truths and then often try to apply theses truth in the real world." (Clifford A Pickover, "The Loom of God: Mathematical Tapestries at the Edge of Time", 1997)

"The primes have been a constant companion in our exploration of the mathematical world yet they remain the most enigmatic of all numbers. Despite the best efforts of the greatest mathematical minds to explain the modulation and transformation of this mystical music, the primes remain an unanswered riddle." (Marcus du Sautoy, "The Music of the Primes", 2003)

"To survive, mathematical ideas must be beautiful, they must be seductive, and they must be illuminating, they must help us to understand, they must inspire us. […] Part of that beauty, an essential part, is the clarity and sharpness that the mathematical way of thinking about things promotes and achieves. Yes, there are also mystic and poetic ways of relating to the world, and to create a new math theory, or to discover new mathematics, you have to feel comfortable with vague, unformed, embryonic ideas, even as you try to sharpen them."  (Gregory Chaitin, "Meta Math: The Quest for Omega", 2005)

"Mathematical language is littered with pejorative and mystical terms - such as irrational, imaginary, surd, transcendental - that were once used to ridicule supposedly impossible objects. And these are just terms applied to numbers. Geometry also has many concepts that seem impossible to most people, such as the fourth dimension, finite universes, and curved space - yet geometers (and physicists) cannot do without them. Thus there is no doubt that  mathematics flirts with the impossible, and seems to make progress by doing so." (John Stillwell, "Yearning for the Impossible: The Surprising Truths of Mathematics", 2006)

"Zero is not a point of non-existence. Zero is always a balance point of existents. The human understanding of 'zero' must undergo the most radical of all transformations. Most people, especially scientists, associate it with absolute nothingness, with non-existence. This is absolutely untrue. Or, to put it another way, we can define it in two ways: 1) nothing as non-existence, in which case it has absolutely no consequences but leads to all manner of abstract paradoxes and contradictions, or 2) nothing as existence, in which case it is always a mathematical balance point for somethings. It is purely mathematical, not scientific, or religious, or spiritual, or emotional, or sensory, or mystical. It is analytic nothing and whenever you encounter it you have to establish the exact means by which it is maintaining its balance of zero." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)

12 December 2021

Pure Mathematics I

"Pure mathematics can never deal with the possibility, that is to say, with the possibility of an intuition answering to the conceptions of the things. Hence it cannot touch the question of cause and effect, and consequently, all the finality there observed must always be regarded simply as formal, and never as a physical end." (Immanuel Kant, "The Critique of Judgement", 1790)

"Mathematics is the life supreme. The life of the gods is mathematics. All divine messengers are mathematicians. Pure mathematics is religion. Its attainment requires a theophany." (Friederich von Hardenberg [Novalis], "Philosophical Writings", 1802)

"In Pure Mathematics, where all the various truths are necessarily connected with each other, (being all necessarily connected with those hypotheses which are the principles of the science), an arrangement is beautiful in proportion as the principles are few; and what we admire perhaps chiefly in the science, is the astonishing variety of consequences which may be demonstrably deduced from so small a number of premises." (Dugald Stewart, "Elements of the Philosophy of the Human Mind" Vol. 3, 1827)

"The great truths with which it [mathematics] deals, are clothed with austere grandeur, far above all purposes of immediate convenience or profit. It is in them that our limited understandings approach nearest to the conception of that   absolute and infinite, towards which in most other things they aspire in vain. In the pure mathematics we contemplate absolute truths, which existed in the divine mind before the morning stars sang together, and which will continue to exist there, when the last of their radiant host shall have fallen from heaven." (Edward Everett, "Orations and Speeches" Vol. 8, 1870)

"Pure mathematics proves itself a royal science both through its content and form, which contains within itself the cause of its being and its methods of proof. For in complete independence mathematics creates for itself the object of which it treats, its magnitudes and laws, its formulas and symbols." (Christian H Dillmann, "Die Mathematik die Fackelträgerin einer neuen Zeit", 1889)

"The chief end of mathematical instruction is to develop certain powers of the mind, and among these the intuition is not the least precious. By it the mathematical world comes in contact with the real world, and even if pure mathematics could do without it, it would always be necessary to turn to it to bridge the gulf between symbol and reality. The practician will always need it, and for one mathematician there are a hundred practicians. However, for the mathematician himself the power is necessary, for while we demonstrate by logic, we create by intuition; and we have more to do than to criticize others’ theorems, we must invent new ones, this art, intuition teaches us." (Henri Poincaré, "The Value of Science", 1905)

"Pure mathematics is a collection of hypothetical, deductive theories, each consisting of a definite system of primitive, undefined, concepts or symbols and primitive, unproved, but self-consistent assumptions (commonly called axioms) together with their logically deducible consequences following by rigidly deductive processes without appeal to intuition." (Graham D Fitch, "The Fourth Dimension simply Explained", 1910)

"The theory of Numbers has always been regarded as one of the most obviously useless branches of Pure Mathematics. The accusation is one against which there is no valid defence; and it is never more just than when directed against the parts of the theory which are more particularly concerned with primes. A science is said to be useful if its development tends to accentuate the existing inequalities in the distribution of wealth, or more directly promotes the destruction of human life. The theory of prime numbers satisfies no such criteria. Those who pursue it will, if they are wise, make no attempt to justify their interest in a subject so trivial and so remote, and will console themselves with the thought that the greatest mathematicians of all ages have found it in it a mysterious attraction impossible to resist." (Georg H Hardy, 1915)

"Proof is an idol before whom the pure mathematician tortures himself." (Arthur S Eddington, 1927)

Pure Mathematics II

"In pure mathematics the maximum of detachment appears to be reached: the mind moves in an infinitely complicated pattern, which is absolutely free from temporal considerations. Yet this very freedom - the essential condition of the mathematician’s activity - perhaps gives him an unfair advantage. He can only be wrong – he cannot cheat." (Kytton Strachey, "Portraits in Miniature", 1931)

"Pure mathematics is, in its way, the poetry of logical ideas. One seeks the most general ideas of operation which will bring together in simple, logical and unified form the largest possible circle of formal relationships.  In this effort toward logical beauty spiritual formulas are discovered necessary for the deeper penetration into the laws of nature." (Albert Einstein, [Obituary for Emmy Noether], 1935)

"Mathematicians do not know what they are talking about because pure mathematics is not concerned with physical meaning. Mathematicians never know whether what they are saying is true because, as pure mathematicians, they make no effort to ascertain whether their theorems are true assertions about the physical world." (Morris Kline, "Mathematics in Western Culture", 1953)

"General Systems Theory is a name which has come into use to describe a level of theoretical model-building which lies somewhere between the highly generalized constructions of pure mathematics and the specific theories of the specialized disciplines. Mathematics attempts to organize highly general relationships into a coherent system, a system however which does not have any necessary connections with the 'real' world around us. It studies all thinkable relationships abstracted from any concrete situation or body of empirical knowledge." (Kenneth E Boulding, "General Systems Theory - The Skeleton of Science", Management Science Vol. 2 (3), 1956)

"The confidence placed in physical theory owes much to its possessing the same kind of excellence from which pure geometry and pure mathematics in general derive their interest, and for the sake of which they are cultivated." (Michael Polanyi, "Personal Knowledge", 1958)

"Pure mathematics are concerned only with abstract propositions, and have nothing to do with the realities of nature. There is no such thing in actual existence as a mathematical point, line or surface. There is no such thing as a circle or square. But that is of no consequence. We can define them in words, and reason about them. We can draw a diagram, and suppose that line to be straight which is not really straight, and that figure to be a circle which is not strictly a circle. It is conceived therefore by the generality of observers, that mathematics is the science of certainty." (William Godwin, "Thoughts on Man", 1969)

"On the face of it there should be no disagreement about mathematical proof. Everybody looks enviously at the alleged unanimity of mathematicians; but in fact there is a considerable amount of controversy in mathematics. Pure mathematicians disown the proofs of applied mathematicians, while logicians in turn disavow those of pure mathematicians. Logicists disdain the proofs of formalists and some intuitionists dismiss with contempt the proofs of logicists and formalists." (Imre Lakatos,"Mathematics, Science and Epistemology" Vol. 2, 1978)

"Theoretical physicists are like pure mathematicians, in that they are often interested in the hypothetical behaviour of entirely imaginary objects, such as parallel universes, or particles traveling faster than light, whose actual existence is not being seriously proposed at all." (John Ziman," Real Science: What it Is, and what it Means", 2000)

"Pure mathematics was characterized by an obsession with proof, rigor, beauty, and elegance, and sought its foundations in the disembodied worlds of logic or intuition. Far from being coextensive with physics, pure mathematics could be ‘applied’ only after it had been made foundationally secure by the purists." (Andrew Warwick, "Masters of Theory: Cambridge and the rise of mathematical physics", 2003)

"There is no way to guarantee in advance what pure mathematics will later find application. We can only let the process of curiosity and abstraction take place, let mathematicians obsessively take results to their logical extremes, leaving relevance far behind, and wait to see which topics turn out to be extremely useful. If not, when the challenges of the future arrive, we won’t have the right piece of seemingly pointless mathematics to hand." (Peter Rowlett, "The Unplanned Impact of Mathematics", Nature Vol. 475 (7355), 2011)

"We tend to think of maths as being an 'exact' discipline, where answers are right or wrong. And it's true that there is a huge part of maths that is about exactness. But in everyday life, numerical answers are sometimes just the start of the debate. If we are trained to believe that every numerical question has a definite, 'right' answer then we miss the fact that numbers in the real world are a lot fuzzier than pure maths might suggest." (Rob Eastaway, "Maths on the Back of an Envelope", 2019)

On Numbers (2000-)

 "As archetypes of our representation of the world, numbers form, in the strongest sense, part of ourselves, to such an extent that it can legitimately be asked whether the subject of study of arithmetic is not the human mind itself. From this a strange fascination arises: how can it be that these numbers, which lie so deeply within ourselves, also give rise to such formidable enigmas? Among all these mysteries, that of the prime numbers is undoubtedly the most ancient and most resistant." (Gerald Tenenbaum & Michael M France, "The Prime Numbers and Their Distribution", 2000)

"Mathematics has given us dazzling insights into the power of exponential growth and how the same patterns recur in numbers, regardless of the phenomena being observed." (Richar Koch, "The Power Laws", 2000)

"One of the most fundamental notions in mathematics is that of number. Although the idea of number is basic, the numbers themselves possess both nuance and complexity that spark the imagination." (Edward B Burger, "Exploring the Number Jungle", 2000)

"We analyze numbers in order to know when a change has occurred in our processes or systems. We want to know about such changes in a timely manner so that we can respond appropriately. While this sounds rather straightforward, there is a complication - the numbers can change even when our process does not. So, in our analysis of numbers, we need to have a way to distinguish those changes in the numbers that represent changes in our process from those that are essentially noise." (Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"[…] you simply cannot make sense of any number without a contextual basis. Yet the traditional attempts to provide this contextual basis are often flawed in their execution. [...] Data have no meaning apart from their context. Data presented without a context are effectively rendered meaningless.(Donald J Wheeler, "Understanding Variation: The Key to Managing Chaos" 2nd Ed., 2000)

"Big numbers warn us that the problem is a common one, compelling our attention, concern, and action. The media like to report statistics because numbers seem to be 'hard facts' - little nuggets of indisputable truth. [...] One common innumerate error involves not distinguishing among large numbers. [...] Because many people have trouble appreciating the differences among big numbers, they tend to uncritically accept social statistics (which often, of course, feature big numbers)." (Joel Best, "Damned Lies and Statistics: Untangling Numbers from the Media, Politicians, and Activists", 2001)

"Mathematics is not just about numbers. As well as numbers, modern mathematics also looks at the relations between them. The passage from pure numerology to this new vision has derived from the realization that the most profound meaning is not in the numbers but in the relations between them. Mathematical investigation is precisely the exploration and the study of the different possible relations; some of them find a concrete and immediate application in the environment in which they are immersed, others just ‘live’ in the minds of those that conceive them." (Cristoforo S Bertuglia & Franco Vaio, "Nonlinearity, Chaos and Complexity: The Dynamics of Natural and Social Systems", 2003)

"One can be highly functionally numerate without being a mathematician or a quantitative analyst. It is not the mathematical manipulation of numbers (or symbols representing numbers) that is central to the notion of numeracy. Rather, it is the ability to draw correct meaning from a logical argument couched in numbers. When such a logical argument relates to events in our uncertain real world, the element of uncertainty makes it, in fact, a statistical argument." (Eric R Sowey, "The Getting of Wisdom: Educating Statisticians to Enhance Their Clients' Numeracy", The American Statistician 57(2), 2003)

"[…] statistical thinking, though powerful, is never as easy or automatic as simply plugging numbers into formulas. In order to use statistical methods appropriately, you need to understand their logic, not just the computing rules." (Ann E Watkins et al, "Statistics in Action: Understanding a World of Data", 2007)

"Equations are the mathematician's way of working out the value of some unknown quantity from circumstantial evidence. ‘Here are some known facts about an unknown number: deduce the number.’ An equation, then, is a kind of puzzle, centered upon a number. We are not told what this number is, but we are told something useful about it. Our task is to solve the puzzle by finding the unknown number." (Ian Stewart, "Why Beauty Is Truth", 2007)

"Our culture, obsessed with numbers, has given us the idea that what we can measure is more important than what we can't measure. Think about that for a minute. It means that we make quantity more important than quality." (Donella Meadows, "Thinking in Systems: A Primer", 2008)

"Mathematical ideas like number can only be really 'seen' with the 'eyes of the mind' because that is how one 'sees' ideas. Think of a sheet of music which is important and useful but it is nowhere near as interesting, beautiful or powerful as the music it represents. One can appreciate music without reading the sheet of music. Similarly, mathematical notation and symbols on a blackboard are just like the sheet of music; they are important and useful but they are nowhere near as interesting, beautiful or powerful as the actual mathematics (ideas) they represent." (Fiacre 0 Cairbre, "The Importance of Being Beautiful in Mathematics", IMTA Newsletter 109, 2009)

"The value of having numbers - data - is that they aren't subject to someone else's interpretation. They are just the numbers. You can decide what they mean for you." (Emily Oster, "Expecting Better", 2013)

"We tend to think of maths as being an 'exact' discipline, where answers are right or wrong. And it's true that there is a huge part of maths that is about exactness. But in everyday life, numerical answers are sometimes just the start of the debate. If we are trained to believe that every numerical question has a definite, 'right' answer then we miss the fact that numbers in the real world are a lot fuzzier than pure maths might suggest." (Rob Eastaway, "Maths on the Back of an Envelope", 2019)

"Numbers can easily confuse us when they are unmoored from a clear definition." (Tim Harford, "The Data Detective: Ten easy rules to make sense of statistics", 2020)

On Numbers (1975-1999)

"Our mistake is not that we take our theories too seriously, but that we do not take them seriously enough. It is always hard to realize that these numbers and equations we play with at our desks have something to do with the real world." (Steven Weinberg, "The First Three Minutes", 1977)

"There is no more reason to expect one graph to ‘tell all’ than to expect one number to do the same." (John W Tukey, "Exploratory Data Analysis", 1977) 

"Numbers are the product of counting. Quantities are the product of measurement. This means that numbers can conceivably be accurate because there is a discontinuity between each integer and the next. Between two and three there is a jump. In the case of quantity there is no such jump, and because jump is missing in the world of quantity it is impossible for any quantity to be exact. You can have exactly three tomatoes. You can never have exactly three gallons of water. Always quantity is approximate." (Gregory Bateson, "Number is Different from Quantity", CoEvolution Quarterly, 1978)

"People often feel inept when faced with numerical data. Many of us think that we lack numeracy, the ability to cope with numbers. […] The fault is not in ourselves, but in our data. Most data are badly presented and so the cure lies with the producers of the data. To draw an analogy with literacy, we do not need to learn to read better, but writers need to be taught to write better." (Andrew Ehrenberg, "The problem of numeracy", American Statistician 35(2), 1981)

"The principal aim of physical theories is understanding. A theory's ability to find a number is merely a useful criterion for a correct understanding." (Yuri I Manin, "Mathematics and Physics", 1981)

"We would wish ‘numerate’ to imply the possession of two attributes. The first of these is an ‘at-homeness’ with numbers and an ability to make use of mathematical skills which enable an individual to cope with the practical mathematical demands of his everyday life. The second is ability to have some appreciation and understanding of information which is presented in mathematical terms, for instance in graphs, charts or tables or by reference to percentage increase or decrease." (Cockcroft Committee, "Mathematics Counts: A Report into the Teaching of Mathematics in Schools", 1982)

"Data in isolation are meaningless, a collection of numbers. Only in context of a theory do they assume significance[...]" (George Greenstein, "Frozen Star", 1983)

"The digital-computer field defined computers as machines that manipulated numbers. The great thing was, adherents said, that everything could be encoded into numbers, even instructions. In contrast, scientists in AI [artificial intelligence] saw computers as machines that manipulated symbols. The great thing was, they said, that everything could be encoded into symbols, even numbers." (Allen Newell, "Intellectual Issues in the History of Artificial Intelligence", 1983)

"A final goal of any scientific theory must be the derivation of numbers. Theories stand or fall, ultimately, upon numbers." (Richard E Bellman, "Eye of the Hurricane: An Autobiography", 1984)

"I shall here present the view that numbers, even whole numbers, are words, parts of speech, and that mathematics is their grammar. Numbers were therefore invented by people in the same sense that language, both written and spoken, was invented. Grammar is also an invention. Words and numbers have no existence separate from the people who use them. Knowledge of mathematics is transmitted from one generation to another, and it changes in the same slow way that language changes. Continuity is provided by the process of oral or written transmission." (Carl Eckart," Our Modern Idol: Mathematical Science", 1984)

"When you have mastered the numbers, you will in fact no longer be reading numbers, any more than you read words when reading a book. You will be reading meanings." (Harold Geneen & Alvin Moscow, "Managing", 1984)

"Numbers have undoubted powers to beguile and benumb, but critics must probe behind numbers to the character of arguments and the biases that motivate them." (Stephen Jay Gould, "An Urchin in the Storm: Essays About Books and Ideas", 1987)

"As a practical matter, mathematics is a science of pattern and order. Its domain is not molecules or cells, but numbers, chance, form, algorithms, and change. As a science of abstract objects, mathematics relies on logic rather than observation as its standard of truth, yet employs observation, simulation, and even experimentation as a means of discovering truth. "(National Research Council, "Everybody Counts", 1989)

"Torture numbers, and they will confess to anything." (Gregg Easterbrook, New Republic, 1989)

"Words and numbers are of equal value, for, in the cloak of knowledge, one is warp and the other woof. It is no more important to count the sands than it is to name the stars." (Norton Juster, "The Phantom Tollbooth", 1989)

"I believe [...] that hypothesis testing has been greatly overemphasized in psychology and in the other disciplines that use it. It has diverted our attention from crucial issues. Mesmerized by a single all-purpose, mechanized, ‘objective’ ritual in which we convert numbers into other numbers and get a yes-no answer, we have come to neglect close scrutiny of where the numbers come from." (Jacob Cohen, "Things I have learned (so far)", American Psychologist 45, 1990)

"If we imagine mathematics as a grand orchestra, the system of whole numbers could be likened to a bass drum: simple, direct, repetitive, providing the underlying rhythm for all the other instruments. There surely are more sophisticated concepts - the oboes and French horns and cellos of mathematics - and we examine some of these in later chapters. But whole numbers are always at the foundation." (William Dunham, "The Mathematical Universe", 1994)

"Mathematics is not a way of hanging numbers on things so that quantitative answers to ordinary questions can be obtained. It is a language that allows one to think about extraordinary questions." (James O Bullock, "Literacy in the Language of Mathematics", The American Mathematical Monthly, Vol. 101, No. 8, October, 1994)

"Number is therefore the most primitive instrument of bringing an unconscious awareness of order into consciousness." (Marie-Louise von Frany, "Creation Myths", 1995)

"You can be moved to tears by numbers - provided they are encoded and decoded fast enough." (Richard Dawkins, "River Out of Eden: A Darwinian View of Life", 1995)

"Numbers, in fact, are the atoms of the universe, combining with everything else." (Calvin C Clawson, Mathematical Mysteries: The Beauty and Magic of Numbers", 1996)

"Data are not just numbers, they are numbers with a context. [...] In data analysis, context provides meaning." (George W Cobb & David S Moore, "Mathematics, Statistics, and Teaching", American Mathematical Monthly, 1997)

"The purpose of plotting is to convey phenomena to the viewer’s cortex, not to provide a place to lookup observed numbers." (Kaye Basford & John W Tukey, "Graphical Analysis of Multi-Response Data", 1998)

On Numbers (1950-1974)

"The harmony of the world is made manifest in Form and Number, and the heart and soul and all the poetry of Natural Philosophy are embodied in the concept of mathematical beauty." (Sir D’Arcy W Thompson, "On Growth and Form", 1951)

"Mathematics is not a popular subject, even though its importance may be generally conceded. The reason for this is to be found in the common superstition that mathematics is but a continuation, a further development, of the fine art of arithmetic, of juggling with numbers." (David Hilbert, "Geometry and the Imagination", 1952)

"Statistics is the name for that science and art which deals with uncertain inferences - which uses numbers to find out something about nature and experience." (Warren Weaver, 1952)

"Just as mathematics aims to study such entities as numbers, functions, spaces, etc., the subject matter of metamathematics is mathematics itself." (Frank C DeSua, "Mathematics: A Non-Technical Exposition", American Scientist, 3 Jul 1954)

"Mathematics, springing from the soil of basic human experience with numbers and data and space and motion, builds up a far-flung architectural structure composed of theorems which reveal insights into the reasons behind appearances and of concepts which relate totally disparate concrete ideas." (Saunders MacLane, "Of Course and Courses"The American Mathematical Monthly, Vol 61, No 3, 1954)

"Numbers have neither substance, nor meaning, nor qualities. They are nothing but marks, and all that is in them we have put into them by the simple rule of straight succession." (Hermann Weyl, "Mathematics and the Laws of Nature", 1959)

"The purpose of computing is insight, not numbers […] sometimes […] the purpose of computing numbers is not yet in sight." (Richard Hamming, [Motto for the book] "Numerical Methods for Scientists and Engineers", 1962)

"[…] numbers are free creations of the human mind; they serve as a means of apprehending more easily and more sharply the difference of things." (Richard Dedekind, "Essays on the Theory of Numbers", 1963)

"[…] it took men about five thousand years, counting from the beginning of number symbols, to think of a symbol for nothing." (Isaac Asimov, "Of Time and Space and Other Things", 1965)

"It is paradoxical that while mathematics has the reputation of being the one subject that brooks no contradictions, in reality it has a long history of successful living with contradictions. This is best seen in the extensions of the notion of number that have been made over a period of 2500 years. From limited sets of integers, to infinite sets of integers, to fractions, negative numbers, irrational numbers, complex numbers, transfinite numbers, each extension, in its way, overcame a contradictory set of demands." (Philip J Davis, "The Mathematics of Matrices", 1965)

"[…] random numbers should not be generated with a method chosen at random. Some theory should be used." (Donald E. Knuth, "The Art of Computer Programming" Vol. II, 1968)

"The generation of random numbers is too important to be left to chance." (Robert R. Coveyou, 1969)

On Numbers (1925-1949)

"The mystery that clings to numbers, the magic of numbers, may spring from this very fact, that the intellect, in the form of the number series, creates an infinite manifold of well distinguishable individuals. Even we enlightened scientists can still feel it e.g. in the impenetrable law of the distribution of prime numbers." (Hermann Weyl, "Philosophy of Mathematics and Natural Science", 1927)

"For it is true, generally speaking, that mathematics is not a popular subject, even though its importance may be generally conceded. The reason for this is to be found in the common superstition that mathematics is but a continuation, a further development, of the fine art of arithmetic, of juggling with numbers." (David Hilbert, "Anschauliche Geometrie", 1932)

"Numbers constitute the only universal language." (Nathanael West, "Miss Lonelyhearts", 1933)

"[...] our knowledge of the external world must always consist of numbers, and our picture of the universe - the synthesis of our knowledge - must necessarily be mathematical in form. All the concrete details of the picture, the apples, the pears and bananas, the ether and atoms and electrons, are mere clothing that we ourselves drape over our mathematical symbols - they do not belong to Nature, but to the parables by which we try to make Nature comprehensible." (Sir James H Jeans, "The New World-Picture of Modern Physics", Supplement to Nature, Vol. 134 (3384), 1934)

"Mathematics is the science of number and space. It starts from a group of self-evident truths and by infallible deduction arrives at incontestable conclusions […] the facts of mathematics are absolute, unalterable, and eternal truths." (E Russell Stabler, "An Interpretation and Comparison of Three Schools of Thought in the Foundations of Mathematics", The Mathematics Teacher, Vol 26, 1935)

"[…] there are terms which cannot be defined, such as number and quantity. Any attempt at a definition would only throw difficulty in the student’s way, which is already done in geometry by the attempts at an explanation of the terms point, straight line, and others, which are to be found in treatise on that subject." (Augustus de Morgan, "On the Study and Difficulties of Mathematics", 1943)

"In other words, without a theory, a plan, the mere mechanical manipulation of the numbers in a problem does not necessarily make sense just because you are using Arithmetic!" (Lillian R Lieber, "The Education of T.C. MITS", 1944)

"The sequence of numbers which grows beyond any stage already reached by passing to the next number is a manifold of possibilities open towards infinity, it remains forever in the status of creation, but is not a closed realm of things existing in themselves. That we blindly converted one into the other is the true source of our difficulties […]" (Hermann Weyl, "Mathematics and Logic", 1946)

On Numbers (1900-1924)

"It is the intuition of pure number, that of pure logical forms, which illumines and directs those we have called analysts. This it is which enables them not alone to demonstrate, but also to invent." (Henri Poincaré, "The Value of Science", 1905)

"Architecture is geometry made visible in the same sense that music is number made audible." (Claude F Bragdon, "The Beautiful Necessity: Seven Essays on Theosophy and Architecture", 1910)

"In the beginning of algebra, even the most intelligent child finds, as a rule, very great difficulty. The use of letters is a mystery, which seems to have no purpose except mystification. It is almost impossible, at first, not to think that every letter stands for some particular number, if only the teacher would reveal what number it stands for." (Bertrand Russell, "Mysticism and Logic: And Other Essays", 1910)

"Mathematics abstracts from all the particular properties of the elements hidden behind its schemata. This is achieved by mathematics with the help of indifferent symbols, like numbers or letters. Tektology must do likewise. Its generalizations should abstract from the concreteness of elements whose organizational relationships they express, and conceal this concreteness behind indifferent symbols." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)

"The way to enable a student to apprehend the instrumental value of arithmetic is not to lecture him on the benefit it will be to him in some remote and uncertain future, but to let him discover that success in something he is interested in doing depends on ability to use numbers." (John Dewey, "Democracy and Education: An Introduction to the Philosophy of Education", 1916)

"Through and through the world is infected with quantity: To talk sense is to talk quantities. It is not use saying the nation is large - How large? It is no use saying the radium is scarce - How scarce? You cannot evade quantity. You may fly to poetry and music, and quantity and number will face you in your rhythms and your octaves." (Alfred N Whitehead, "The Aims of Education and Other Essays", 1917)

"It is not surprising that the greatest mathematicians have again and again appealed to the arts in order to find some analogy to their own work. They have indeed found it in the most varied arts, in poetry, in painting, and in sculpture, although it would certainly seem that it is in music, the most abstract of all the arts, the art of number and of time, that we find the closest analogy." (Havelock Ellis, "The Dance of Life", 1923)

On Numbers (1800-1899)

"Regarding numbers and proportions, the best way to catch the imagination is to speak to the eyes." (William Playfair, "Elemens de statistique", 1802)

"There is no inquiry which is not finally reducible to a question of Numbers; for there is none which may not be conceived of as consisting in the determination of quantities by each other, according to certain relations." (Auguste Comte, "The Positive Philosophy", 1830)

"We must admit with humility that, while number is purely a product of our minds, space has a reality outside our minds, so that we cannot completely prescribe its properties a priori." (Karl Friedrich Gauss, 1830)

"Things of all kinds are subject to a universal law which may be called the law of large numbers. It consists in the fact that, if one observes very considerable numbers of events of the same nature, dependent on constant causes and causes which vary irregularly, sometimes in one direction, sometimes in the other, it is to say without their variation being progressive in any definite direction, one shall find, between these numbers, relations which are almost constant." (Siméon-Denis Poisson, "Poisson’s Law of Large Numbers", 1837)

"[…] a single number has more genuine and permanent value than an expensive library full of hypotheses." (Robert Mayer, [Letter to Griesinger], 1844)

"The Laws of Nature are merely truths or generalized facts, in regard to matter, derived by induction from experience, observation, arid experiment. The laws of mathematical science are generalized truths derived from the consideration of Number and Space." (Charles Davies, "The Logic and Utility of Mathematics", 1850)

"It is not of the essence of mathematics to be conversant with the ideas of number and quantity. Whether as a general habit of mind it would be desirable to apply symbolic processes to moral argument, is another question." (George Boole, "An Investigation of the Laws of Thought", 1854)

"In order to obtain physical ideas without adopting a physical theory we must make ourselves familiar with the existence of physical analogies. By a physical analogy I mean that partial similarity between the laws of one science and those of another which makes each of them illustrate the other. Thus all the mathematical sciences are founded on relations between physical laws and laws of numbers, so that the aim of exact science is to reduce the problems of nature to the determination of quantities by operations with numbers." (James C Maxwell, "On Faraday's Lines of Force", 1856)

"The Mathematics, like language, (of which indeed they may be considered a species,) comprehending under that designation the whole science of number, space, form, time, and motion, as far as it can be expressed in abstract formulas, are evidently not only one of the most useful, but one of the grandest of studies." (Edward Everett, [address] 1857)

"All external objects and events which we can contemplate are viewed as having relations of Space, Time, and Number; and are subject to the general conditions which these Ideas impose, as well as to the particular laws which belong to each class of objects and occurrences." (William Whewell, "History of Scientific Ideas" Vol. 1, 1858)

"Whenever a man can get hold of numbers, they are invaluable: if correct, they assist in informing his own mind, but they are still more useful in deluding the minds of others. Numbers are the masters of the weak, but the slaves of the strong." (Charles Babbage, "Passages From the Life of a Philosopher", 1864)

"The purely formal sciences, logic and mathematics, deal with such relations which are independent of the definite content, or the substance of the objects, or at least can be. In particular, mathematics involves those relations of objects to each other that involve the concept of size, measure, number." (Hermann Hankel, "Theorie der Complexen Zahlensysteme", 1867)

"Mathematics is the science of the functional laws and transformations which enable us to convert figured extension and rated motion into number." (George Holmes Howison, "The Departments of Mathematics, and their Mutual Relations", Journal of Speculative Philosophy Vol. 5, No. 2, 1871)

"Music is like geometric figures and numbers, which are the universal forms of all possible objects of experience." (Friedrich Nietzsche, "Birth of Tragedy", 1872)

"That such comparisons with non-arithmetic notions have furnished the immediate occasion for the extension of the number-concept may, in a general way, be granted (though this was certainly not the case in the introduction of complex numbers); but this surely is no sufficient ground for introducing these foreign notions into arithmetic, the science of numbers." (Richard Dedekind, "Stetigkeit und irrationale Zahlen", 1872)

"When you can measure what you are speaking about, and express it in numbers, you know something about it; but when you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind; it may be the beginning of knowledge, but you have scarcely in your thoughts advanced to the state of science." (Lord Kelvin, "Electrical Units of Measurement", 1883)

"Number is but another name for diversity." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1887)

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...