"Great numbers are not counted correctly to a unit, they are estimated; and we might perhaps point to this as a division between arithmetic and statistics, that whereas arithmetic attains exactness, statistics deals with estimates, sometimes very accurate, and very often sufficiently so for their purpose, but never mathematically exact." (Arthur L Bowley, "Elements of Statistics", 1901)
"[…] numbers are free creations of the human mind; they serve as a means of apprehending more easily and more sharply the difference of things." (Richard Dedekind, "Essays on the Theory of Numbers", 1901)
"Statistics may rightly be called the science of averages. […] Great numbers and the averages resulting from them, such as we always obtain in measuring social phenomena, have great inertia. […] It is this constancy of great numbers that makes statistical measurement possible. It is to great numbers that statistical measurement chiefly applies." (Sir Arthur L Bowley,"Elements of Statistics", 1901)
"It has been said that no science is established on a firm basis unless its generalisations can be expressed in terms of number, and it is the special province of mathematics to assist the investigator in finding numerical relations between phenomena. After experiment, then mathematics. While a science is in the experimental or observational stage, there is little scope for discerning numerical relations. It is only after the different workers have 'collected data' that the mathematician is able to deduce the required generalisation." (Joseph W Mellor, "Higher Mathematics for Students of Chemistry and Physics', 1902)
"All the modern higher mathematics is based on a calculus of operations, on laws of thought. All mathematics, from the first, was so in reality; but the evolvers of the modern higher calculus have known that it is so. Therefore elementary teachers who, at the present day, persist in thinking about algebra and arithmetic as dealing with laws of number, and about geometry as dealing with laws of surface and solid content, are doing the best that in them lies to put their pupils on the wrong track for reaching in the future any true understanding of the higher algebras. Algebras deal not with laws of number, but with such laws of the human thinking machinery as have been discovered in the course of investigations on numbers. Plane geometry deals with such laws of thought as were discovered by men intent on finding out how to measure surface; and solid geometry with such additional laws of thought as were discovered when men began to extend geometry into three dimensions." (Mary E Boole, "Lectures on the Logic of Arithmetic", 1903)
"Arithmetic must be discovered in just the same sense in which Columbus discovered the West Indies, and we no more create numbers than he created the Indians." (Bertrand Russell,"The Principles of Mathematics", 1903)
"[...] measurement demands some one-one relations between the numbers and magnitudes in question - a relation which may be direct or indirect, important or trivial, according to circumstances." (Bertrand Russel, "The Principles of Mathematics", 1903)
"It is the intuition of pure number, that of pure logical forms, which illumines and directs those we have called analysts. This it is which enables them not alone to demonstrate, but also to invent." (Henri Poincaré, "The Value of Science", 1905)
"Pythagoras says that number is the origin of all things, and certainly the law of number is the key that unlocks the secrets of the universe. But the law of number possesses an immanent order, which is at first sight mystifying, but on a more intimate acquaintance we easily understand it to be intrinsically necessary; and this law of number explains the wondrous consistency of the laws of nature." (Paul Carus, "Reflections on Magic Squares", Monist Vol. 16, 1906)
"[…] imaginary numbers made their own way into arithmetical calculation without the approval, and even against the desires of individual mathematicians, and obtained wider circulation only gradually and the extent to which they showed themselves useful." (Felix Klein,"Elementary Mathematics from an Advanced Standpoint", 1908)
"If one intends to base arithmetic on the theory of natural numbers as finite cardinals, one has to deal mainly with the definition of finite set; for the cardinal is, according to its nature, a property of a set, and any proposition about finite cardinals can always be expressed as a proposition about finite sets. In the following I will try to deduce the most important property of natural numbers, namely the principle of complete induction, from a definition of finite set which is as simple as possible, at the same time showing that the different definitions [of finite set] given so far are equivalent to the one given here." (Ernst Zermelo, "Ueber die Grundlagen der Arithmetik", Atti del IV Congresso Internazionale dei Matematici, 1908)
"If the activity of a science can be supplied by a machine, that science cannot amount to much, so it is said; and hence it deserves a subordinate place. The answer to such arguments, however, is that the mathematician, even when he is himself operating with numbers and formulas, is by no means an inferior counterpart of the errorless machine [...]" (Felix Klein, "Elementary Mathematics from an Advanced Standpoint", 1908)
"Let us look for a moment at the general significance of the fact that calculating machines actually exist, which relieve mathematicians of the purely mechanical part of numerical computations, and which accomplish the work more quickly and with a greater degree of accuracy; for the machine is not subject to the slips of the human calculator. The existence of such a machine proves that computation is not concerned with the significance of numbers, but that it is concerned essentially only with the formal laws of operation; for it is only these that the machine can obey - having been thus constructed - an intuitive perception of the significance of numbers being out of the question." (Felix Klein, "Elementarmathematik vom hoheren Standpunkte aus", 1908)
"What, in fact, is mathematical discovery? It does not consist in making new combinations with mathematical entities that are already known. That can be done by anyone, and the combinations that could be so formed would be infinite in number, and the greater part of them would be absolutely devoid of interest. Discovery consists precisely in not constructing useless combinations, but in constructing those that are useful, which are an infinitely small minority. Discovery is discernment, selection." (Henri Poincaré, "Science and Method", 1908)
"Arithmetic does not present to us that feeling of continuity which is such a precious guide; each whole number is separate from the next of its kind and has in a sense individuality; each in a manner is an exception and that is why general theorems are rare in the theory of numbers; and that is why those theorems which may exist are more hidden and longer escape those who are searching for them." (Henri Poincaré,"Annual Report of the Board of Regents of the Smithsonian Institution", 1909)
No comments:
Post a Comment