23 December 2022

Mathematical Experience I

"The study of mathematics - from ordinary reckoning up to the higher processes - must be connected with knowledge of nature, and at the same time with experience, that it may enter the pupil’s circle of thought." (Johann F Herbart, "Letters and Lectures on Education", 1908)

"The ordinary mathematical treatment of any applied science substitutes exact axioms for the approximate results of experience, and deduces from these axioms the rigid mathematical conclusions. In applying this method it must not be forgotten that the mathematical developments transcending the limits of exactness of the science are of no practical value. It follows that a large portion of abstract mathematics remains without finding any practical application, the amount of mathematics that can be usefully employed in any science being in proportion to the degree of accuracy attained in the science. Thus, while the astronomer can put to use a wide range of mathematical theory, the chemist is only just beginning to apply the first derivative, i. e. the rate of change at which certain processes are going on; for second derivatives he does not seem to have found any use as yet." (Felix Klein, "Lectures on Mathematics", 1911)

"The mathematical laws presuppose a very complex elaboration. They are not known exclusively either a priori or a posteriori, but are a creation of the mind; and this creation is not an arbitrary one, but, owing to the mind’s resources, takes place with reference to experience and in view of it. Sometimes the mind starts with intuitions which it freely creates; sometimes, by a process of elimination, it gathers up the axioms it regards as most suitable for producing a harmonious development, one that is both simple and fertile. The mathematics is a voluntary and intelligent adaptation of thought to things, it represents the forms that will allow of qualitative diversity being surmounted, the moulds into which reality must enter in order to become as intelligible as possible." (Émile Boutroux, "Natural Law in Science and Philosophy", 1914)

"In this respect mathematics fails to reproduce with complete fidelity the obvious fact that experience is not composed of static bits, but is a string of activity, or the fact that the use of language is an activity, and the total meanings of terms are determined by the matrix in which they are embedded." (Percy W Bridgman, "In the Nature of Physical Theory", 1931)

"Mathematics, springing from the soil of basic human experience with numbers and data and space and motion, builds up a far-flung architectural structure composed of theorems which reveal insights into the reasons behind appearances and of concepts which relate totally disparate concrete ideas." (Saunders MacLane, "Of Course and Courses"The American Mathematical Monthly, Vol 61, No 3, 1954)

"The theory of relativity is a fine example of the fundamental character of the modern development of theoretical science. The initial hypotheses become steadily more abstract and remote from experience. On the other hand, it gets nearer to the grand aim of all science, which is to cover the greatest possible number of empirical facts by logical deduction from the smallest possible number of hypotheses or axioms." (Albert Einstein, 1954)

"Is it possible to breach this wall, to present mathematics in such a way that the spectator may enjoy it? Cannot the enjoyment of mathematics be extended beyond the small circle of those who are ‘mathematically gifted’? Indeed, only a few are mathematically gifted in the sense that they are endowed with the talent to discover new mathematical facts. But by the same token, only very few are musically gifted in that they are able to compose music. Nevertheless, there are many who can understand and perhaps reproduce music, or who at least enjoy it. We believe that the number of people who can understand simple mathematical ideas is not relatively smaller than the number of those who are commonly called musical, and that their interest will be stimulated if only we can eliminate the aversion toward mathematics that so many have acquired from childhood experiences." (Hans Rademacher & Otto Toeplitz, "The Enjoyment of Mathematics", 1957)

"Mathematics has, of course, given the solution of the difficulties in terms of the abstract concept of converging infinite series. In a certain metaphysical sense this notion of convergence does not answer Zeno’s argument, in that it does not tell how one is to picture an infinite number of magnitudes as together making up only a finite magnitude; that is, it does not give an intuitively clear and satisfying picture, in terms of sense experience, of the relation subsisting between the infinite series and the limit of this series." (Carl B Boyer, "The History of the Calculus and Its Conceptual Development", 1959)

"Mathematics is a model of exact reasoning, an absorbing challenge to the mind, an esthetic experience for creators and some students, a nightmarish experience to other students, and an outlet for the egotistic display of mental power." (Morris Kline, "Mathematics and the Physical World", 1959)

"The question ‘What is mathematics?’ cannot be answered meaningfully by philosophical generalities, semantic definitions or journalistic circumlocutions. Such characterizations also fail to do justice to music or painting. No one can form an appreciation of these arts without some experience with rhythm, harmony and structure, or with form, color and composition. For the appreciation of mathematics actual contact with its substance is even more necessary." (Richard Courant, "Mathematics in the Modern World", Scientific American Vol. 211 (3), 1964)

"Mathematics associates new mental images with […] physical abstractions; these images are almost tangible to the trained mind but are far removed from those that are given directly by life and physical experience." (Yuri I Manin, "Mathematics and Physics", 1981)

"The assumptions and definitions of mathematics and science come from our intuition, which is based ultimately on experience. They then get shaped by further experience in using them and are occasionally revised. They are not fixed for all eternity." (Richard Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"To experience the joy of mathematics is to realize mathematics is not some isolated subject that has little relationship to the things around us other than to frustrate us with unbalanced check books and complicated computations. Few grasp the true nature of mathematics - so entwined in our environment and in our lives." (Theoni Pappas, "The Joy of Mathematics" Discovering Mathematics All Around You", 1986)

"Mathematics is also seen by many as an analogy. But it is implicitly assumed to be the analogy that never breaks down. Our experience of the world has failed to reveal any physical phenomenon that cannot be described mathematically. That is not to say that there are not things for which such a description is wholly inappropriate or pointless. Rather, there has yet to be found any system in Nature so unusual that it cannot be fitted into one of the strait-jackets that mathematics provides." (John Barrow," Pi in the Sky: Counting, Thinking, and Being", 1992)

"The relationship of math to the real world has been a conundrum for philosophers for centuries, but it is also an inspiration for poets. The patterns of mathematics inhabit a liminal space - they were initially derived from the natural world and yet seem to exist in a separate, self-contained system standing apart from that world. This makes them a source of potential metaphor: mapping back and forth between the world of personal experience and the world of mathematical patterns opens the door to novel connections." (Alice Major, "Mapping from e to Metaphor", 2018)

"Mathematics originates in the mind of an individual, as it doubtless originated historically in the collective life of mankind, with the recognition of certain recurrent abstract features in common experience, and the development of processes of counting, measuring, and calculating, by which order can be brought into the manipulations of these features. It originated in this manner, indeed; but already at a very early stage it begins to transcend the practical sphere and its character undergoes a corresponding change. Intellectual curiosity progressively takes charge, despite the fact that practical considerations may for long continue to be the main source of interest and may indeed never cease to stimulate the creation of new concepts and new methods. As mathematics breaks from its early dependence on practical utility, its ‘immediate’ significance is at the same time lost and the goal is to discover what it is that makes 'emancipated' mathematics valid. (Geoffrey T Kneebone)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...