29 December 2022

On Continuity V (Geometry)

"Only geometry can hand us the thread [which will lead us through] the labyrinth of the continuum's composition, the maximum and the minimum, the infinitesimal and the infinite; and no one will arrive at a truly solid metaphysics except he who has passed through this [labyrinth]." (Gottfried W Leibniz, "Dissertatio Exoterica De Statu Praesenti et Incrementis Novissimis Deque Usu Geometriae", 1676)

"I find the essence of continuity [...] in the following principle: If all points of the straight line fall into two classes such that every point of the first class lies to the left of every point of the second class, then there exists one and only one point which produces this division of all points into these two classes, this severing of the straight line into two portions." (Richard Dedekind, "Stetigkeit und Irrationale Zahlen" ["Continuity and Irrational Numbers", 1872)

"When we consider complex numbers and their geometrical representation, we leave the field of the original concept of quantity, as contained especially in the quantities of Euclidean geometry: its lines, surfaces and volumes. According to the old conception, length appears as something material which fills the straight line between its end points and at the same time prevents another thing from penetrating into its space by its rigidity. In adding quantities, we are therefore forced to place one quantity against another. Something similar holds for surfaces and solid contents. The introduction of negative quantities made a dent in this conception, and imaginary quantities made it completely impossible. Now all that matters is the point of origin and the end point; whether there is a continuous line between them, and if so which, appears to make no difference whatsoever; the idea of filling space has been completely lost. All that has remained is certain general properties of addition, which now emerge as the essential characteristic marks of quantity. The concept has thus gradually freed itself from intuition and made itself independent. This is quite unobjectionable, especially since its earlier intuitive character was at bottom mere appearance. Bounded straight lines and planes enclosed by curves can certainly be intuited, but what is quantitative about them, what is common to lengths and surfaces, escapes our intuition." (Gottlob Frege, "Methods of Calculation based on an Extension of the Concept of Quantity", 1874)

"The comparison of the rational numbers with a straight line has led to the recognition of the existence of gaps, of a certain incompleteness or discontinuity of the rationals, while we ascribe to the straight line completeness, absence of gaps, or continuity." (Richard Dedekind, "Continuity and Irrational Numbers", 1901)

"The scene of action of reality is not a three-dimensional Euclidean space but rather a four-dimensional world, in which space and time are linked together indissolubly. However deep the chasm may be that separates the intuitive nature of space from that of time in our experience, nothing of this qualitative difference enters into the objective world which physics endeavors to crystallize out of direct experience. It is a four-dimensional continuum, which is neither 'time' nor 'space'. Only the consciousness that passes on in one portion of this world experiences the detached piece which comes to meet it and passes behind it as history, that is, as a process that is going forward in time and takes place in space." (Hermann Weyl, "Space, Time, Matter", 1922)

"In order to regain in a rigorously defined function those properties that are analogous to those ascribed to an empirical curve with respect to slope and curvature (first and higher difference quotients), we need not only to require that the function is continuous and has a finite number of maxima and minima in a finite interval, but also assume explicitly that it has the first and a series of higher derivatives (as many as one will want to use)." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"The most general definition of a function that we have reached in modern mathematics starts by fixing the values that the independent variable x can take on. We define that x must successively pass through the points of a certain 'point set'. The language used is therefore geometric […]." (Felix Klein, "Elementary Mathematics from a Higher Standpoint" Vol III: "Precision Mathematics and Approximation Mathematics", 1928)

"The bridging of the chasm between the domains of the discrete and the continuous, or between arithmetic and geometry, is one of the most important - nay, the most important - problem of the foundations of mathematics. [...] Of course, the character of reasoning has changed, but, as always, the difficulties are due to the chasm between the discrete and the continuous - that permanent stumbling block which also plays an extremely important role in mathematics, philosophy, and even physics." (Abraham Fraenkel, "Foundations of Set Theory", 1953)

"However, it turns out that a one-to-one mapping of the points in a square into the points on a line cannot be continuous. As we move smoothly along a curve through the square, the points on the line which represent the successive points on the square necessarily jump around erratically, not only for the mapping described above but for any one-to-one mapping whatever. Any one-to-one mapping of the square onto the line is discontinuous." (John R Pierce, "An Introduction to Information Theory: Symbols, Signals & Noise" 2nd Ed., 1980)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Douglas T Ross - Collected Quotes

"Automatic design has the computer do too much and the human do too little, whereas automatic programming has the human do too much and...