"Where chaos begins, classical science stops. For as long as the world has had physicists inquiring into the laws of nature, it has suffered a special ignorance about disorder in the atmosphere, in the fluctuations of the wildlife populations, in the oscillations of the heart and the brain. The irregular side of nature, the discontinuous and erratic side these have been puzzles to science, or worse, monstrosities." (James Gleick, "Chaos", 1987)
"When loops are present, the network is no longer singly connected and local propagation schemes will invariably run into trouble. [...] If we ignore the existence of loops and permit the nodes to continue communicating with each other as if the network were singly connected, messages may circulate indefinitely around the loops and process may not converges to a stable equilibrium. […] Such oscillations do not normally occur in probabilistic networks […] which tend to bring all messages to some stable equilibrium as time goes on. However, this asymptotic equilibrium is not coherent, in the sense that it does not represent the posterior probabilities of all nodes of the network." (Judea Pearl, "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference", 1988)
"Nature abounds with periodic phenomena: from the motion of a swing to the oscillations of atoms, from the chirping of a grasshopper to the orbits of the heavenly bodies. […] Of course, nothing in nature is exactly periodic. All motion has a beginning and an end, so that, in the mathematical sense, strict periodicity does not exist in the real world. Nevertheless, periodicity has proved to be a supremely useful concept in elucidating underlying laws and mechanisms in many fields." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)
"What we now call chaos is a time evolution with sensitive dependence on initial condition. The motion on a strange attractor is thus chaotic. One also speaks of deterministic noise when the irregular oscillations that are observed appear noisy, but the mechanism that produces them is deterministic." (David Ruelle, "Chance and Chaos", 1991)
"Real dynamical problems typically involve nonlinear differential equations of second order, but these often simplify greatly if we investigate small oscillations about a position of equilibrium. Coupled oscillators are particularly interesting, an early example being the double pendulum, first studied by Euler and Daniel Bernoulli in the 1730s."
"Systems which exhibit chaotic oscillations typically do so for some ranges of the relevant parameters but not for others, so one matter of obvious interest is how the chaos appears (or disappears) as one of the parameters is gradually varied."
"Alternating positive and negative feedback produces a special form of stability represented by endless oscillation between two polar states or conditions." (
"In negative feedback regulation the organism has set points to which different parameters (temperature, volume, pressure, etc.) have to be adapted to maintain the normal state and stability of the body. The momentary value refers to the values at the time the parameters have been measured. When a parameter changes it has to be turned back to its set point. Oscillations are characteristic to negative feedback regulation […]" (Gaspar Banfalvi, "Homeostasis - Tumor – Metastasis", 2014)
"A limit cycle is an isolated closed trajectory. Isolated means that neighboring trajectories are not closed; they spiral either toward or away from the limit cycle. If all neighboring trajectories approach the limit cycle, we say the limit cycle is stable or attracting. Otherwise the limit cycle is unstable, or in exceptional cases, half-stable. Stable limit cycles are very important scientifically - they model systems that exhibit self-sustained oscillations. In other words, these systems oscillate even in the absence of external periodic forcing."
"Wessel and his fellow explorers had discovered the natural habitat of Leibniz’s ghostly amphibians: the complex plane. Once the imaginaries were pictured there, it became clear that their meaning could be anchored to a familiar thing - sideways or rotary motion - giving them an ontological heft they’d never had before. Their association with rotation also meant that they could be conceptually tied to another familiar idea: oscillation." (David Stipp, "A Most Elegant Equation: Euler's Formula and the Beauty of Mathematics", 2017)
No comments:
Post a Comment