23 December 2022

Mathematical Experience II: Mathematicians

"A scientist worthy of the name, above all a mathematician, experiences in his work the same impression as an artist; his pleasure is as great and of the same nature. [...] we work not only to obtain the positive results which, according to the profane, constitute our one and only affection, as to experience this esthetic emotion and to convey it to others who are capable of experiencing it." (Henri Poincaré, "Notice sur Halphen", Journal de l'École Polytechnique, 1890)

"It is a melancholic experience for a professional mathematician to find himself writing about mathematics. The function of a mathematician is to do something, to prove new theorems, to add to mathematics, and not to talk about what he or other mathematicians have done [...] there is no scorn more profound, or on the whole more justifiable, than that of the men who make for the men who explain. Exposition, criticism, appreciation, is work for second-rate minds."  (Godfrey H Hardy, "A Mathematician's Apology", 1940)

"Nothing in our experience suggests the introduction of [complex numbers]. Indeed, if a mathematician is asked to justify his interest in complex numbers, he will point, with some indignation, to the many beautiful theorems in the theory of equations, of power series, and of analytic functions in general, which owe their origin to the introduction of complex numbers. The mathematician is not willing to give up his interest in these most beautiful accomplishments of his genius." (Eugene P Wigner, "The Unreasonable Effectiveness of Mathematics in the Natural Sciences", Communications in Pure and Applied Mathematics 13 (1), 1960)

"Any applied mathematicians - any engineer using mathematics - works sometimes more and sometimes less mathematically. When he is most mathematical he makes least appeal to experience." (Chandler Davis, "Materialist Mathematics", 1974)

"Every mathematician worthy of the name has experienced the state of lucid exaltation in which one thought succeeds another as if miraculously. This feeling may last for hours at a time, even for days. Once you have experienced it, you are eager to repeat it but unable to do it at will, unless perhaps by dogged work." (André Weil, "The Apprenticeship of a Mathematician", 1992)

"To be an engineer, and build a marvelous machine, and to see the beauty of its operation is as valid an experience of beauty as a mathematician's absorption in a wondrous theorem. One is not ‘more’ beautiful than the other. To see a space shuttle standing on the launch pad, the vented gases escaping, and witness the thunderous blast-off as it climbs heavenward on a pillar of flame - this is beauty. Yet it is a prime example of applied mathematics." (Calvin C Clawson, "Mathematical Mysteries", 1996)

"Mathematics is not a matter of ‘anything goes,’ and every mathematician is guided by explicit or unspoken assumptions as to what counts as legitimate – whether we choose to view these assumptions as the product of birth, experience, indoctrination, tradition, or philosophy. At the same time, mathematicians are primarily problem solvers and theory builders, and answer first and foremost to the internal exigencies of their subject." (Jeremy Avigad, "Methodology and Metaphysics in the Development of Dedekind’s Theory of Ideals", 2006)

"Popular accounts of mathematics often stress the discipline’s obsession with certainty, with proof. And mathematicians often tell jokes poking fun at their own insistence on precision. However, the quest for precision is far more than an end in itself. Precision allows one to reason sensibly about objects outside of ordinary experience. It is a tool for exploring possibility: about what might be, as well as what is." (Donal O’Shea, "The Poincaré Conjecture", 2007)

"To get a true understanding of the work of mathematicians, and the need for proof, it is important for you to experiment with your own intuitions, to see where they lead, and then to experience the same failures and sense of accomplishment that mathematicians experienced when they obtained the correct results. Through this, it should become clear that, when doing any level of mathematics, the roads to correct solutions are rarely straight, can be quite different, and take patience and persistence to explore." (Alan Sultan & Alice F Artzt, "The Mathematics that every Secondary School Math Teacher Needs to Know", 2011)

"I think the thing which makes mathematics a pleasant occupation are those few minutes when suddenly something falls into place and you understand. Now a great mathematician may have such moments very often. Gauss, as his diaries show, had days when he had two or three important insights in the same day. Ordinary mortals have it very seldom. Some people experience it only once or twice in their lifetime. But the quality of this experience - those who have known it - is really joy comparable to no other joy." (Lipman Bers)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...