19 January 2023

Theory of Everything I

"Physicists dream of a unified description of Nature. Symmetry, in its power to tie together apparently unrelated aspects of physics, is linked closely to the notion of unity." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"The theory of everything may come in its time, but not until we are certain that Nature has exhausted her bag of performable tricks." (Sheldon L Glashow, "Desperately Seeking Superstrings?", Physics Today, 1986)

"A more interesting problem is the extent to which the brain is qualitatively adapted to understand the Universe. Why should its categories of thought and understanding be able to cope with the scope and nature of the real world? Why should be Theory of Everything be written in a 'language' that our minds can decode? Why has the process of natural selection so over-endowed us with mental faculties that we can understand the whole fabric of the Universe far beyond anything required for our past and present survival?" (John D Barrow, "New Theories of Everything", 1991)

"On this view, we recognize science to be the search for algorithmic compressions. We list sequences of observed data. We try to formulate algorithms that compactly represent the information content of those sequences. Then we test the correctness of our hypothetical abbreviations by using them to predict the next terms in the string. These predictions can then be compared with the future direction of the data sequence. Without the development of algorithmic compressions of data all science would be replaced by mindless stamp collecting - the indiscriminate accumulation of every available fact. Science is predicated upon the belief that the Universe is algorithmically compressible and the modern search for a Theory of Everything is the ultimate expression of that belief, a belief that there is an abbreviated representation of the logic behind the Universe's properties that can be written down in finite form by human beings." (John D Barrow, New Theories of Everything", 1991)

"The inflationary period of expansion does not smooth out irregularity by entropy-producing processes like those explored by the cosmologies of the seventies. Rather it sweeps the irregularity out beyond the Horizon of our visible Universe, where we cannot see it. The entire universe of stars and galaxies on view to us. […] on this hypothesis, is but the reflection of a minute, perhaps infinitesimal, portion of the universe's initial conditions, whose ultimate extent and structure must remain forever unknowable to us. A theory of everything does not help here. The information contained in the observable part of the universe derives from the evolution of a tiny part of the initial conditions for the entire universe. The sum total of all the observations we could possibly make can only tell us about a minuscule portion of the whole." (John D Barrow, "Theories of Everything: The Quest for Ultimate Explanation", 1991)

"The scope of Theories of Everything is infinite but bounded; they are necessary parts of a full understanding of things but they are far from sufficient to reveal everything about a Universe like ours. In the pages of this book, we have seen something of what a Theory of Everything might hope to teach us about the unity of the Universe and the way in which it may contain elements that transcend our present compartmentalized view of Nature's ingredients. But we have also learnt that there is more to Everything than meets the eye. Unlike many others that we can imagine, our world contains prospective elements. Theories of Everything can make no impression upon predicting these prospective attributes of reality; yet, strangely, many of these qualities will themselves be employed in the human selection and approval of an aesthetically acceptable Theory of Everything. There is no formula that can deliver all truth, all harmony, all simplicity. No Theory of Everything can ever provide total insight. For, to see through everything, would leave us seeing nothing at all." (John D Barrow, "New Theories of Everything", 1991)

"The problems associated with the initial singularity of the universe bring us to what is called the theory of everything. It is an all-encompassing theory that would completely explain me origin of the universe and everything in it. It would bring together general relativity and quantum mechanics, and explain everything there is to know about the elementary particles of the universe, and the four basic forces of nature (gravitational, electromagnetic, weak, and strong nuclear forces). Furthermore, it would explain the basic laws of nature and the fundamental constants of nature such as the speed of light and Planck's constant." (Barry R Parker, "Chaos in the Cosmos: The stunning complexity of the universe", 1996)

"I don't have the hubris to imagine a theory of everything. I think that we scientists are seeking an understanding of the natural world. We come in various types - chemists and physicists and biologists and such - and we all have the same goal. We are making progress. The theories we have today of life and chemistry and physics are much better than they were ten years ago. And ten years from now they will be better still." (Sheldon Lee Glashow, [interview] 2003)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...