11 November 2023

Anthony Zee - Collected Quotes

"As glimpsed by physicists, Nature's rules are simple, but also intricate: Different rules are subtly related to each other. The intricate relations between the rules produce interesting effects in many physical situations. [...] Nature's design is not only simple, but minimally so, in the sense that were the design any simpler, the universe would be a much duller place." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"In science, one tries to say what no one else has ever said before. In poetry, one tries to say what everyone else has already said, but better. This explains, in essence, why good poetry is as rare as good science." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"In the path-integral formulation, the essence of quantum physics may be summarized with two fundamental rules: (1). The classical action determines the probability amplitude for a specific chain of events to occur, and (2) the probability that either one or the other chain of events occurs is determined by the probability amplitudes corresponding to the two chains of events. Finding these rules represents a stunning achievement by the founders of quantum physics." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"Physicists dream of a unified description of Nature. Symmetry, in its power to tie together apparently unrelated aspects of physics, is linked closely to the notion of unity." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"Physics is the most reductionistic of sciences. [...] Contemporary physics rests on the cornerstone of reductionism. As we delve deeper, Nature appears ever simpler. That this is so is, in fact, astonishing. We have no a priori reason to expect the universe, with its fantastic wealth of bewilderingly complex phenomena, to be governed ultimately by a few simple rules." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"The beauty that Nature has revealed to physicists in Her laws is a beauty of design, a beauty that recalls, to some extent, the beauty of classical architecture, with its emphasis on geometry and symmetry. The system of aesthetics used by physicists in judging Nature also draws its inspiration from the austere finality of geometry." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"The impossibility of defining absolute motion can be seen as the manifestation of a symmetry known as relativistic invariance. In the same way that parity invariance tells us that we cannot distinguish the mirror-image world from our world, relativistic invariance tells us that it is impossible to decide whether we are at rest or moving steadily." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"The power and glory of symmetry allow us to bypass completely the construction of strong interaction theories of dubious utility. We are able to contain and isolate our ignorance. [...] Symmetry tells us that states in the same multiplet must have the same energy, but it cannot tell us what that energy is." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"The precise mathematical definition of symmetry involves the notion of invariance. A geometrical figure is said to be symmetric under certain operations if those operations leave it unchanged." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"The search for fundamental symmetries boils down to the study of transformations that do not change fundamental physical action - such transformations as reflection, rotation, the Lorentz transformation, and the like." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"To detect a symmetry in the fundamental design, one would have to check the covariance of each of the many equations of motion in the differential formulation. With the action formulation, on the other hand, one has the considerably easier task of checking the invariance of the action." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"Toward the end of the last century, many physicists felt that the mathematical description of physics was getting ever more complicated. Instead, the mathematics involved has become ever more abstract, rather than more complicated. The mind of God appears to be abstract but not complicated. He also appears to like group theory." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"Unlike an architect, Nature does not go around expounding on the wondrous symmetries of Her design. Instead, theoretical physicists must deduce them. Some symmetries, such as parity and rotational invariances, are intuitively obvious. We expect Nature to possess these symmetries, and we are shocked if She does not. Other symmetries, such as Lorentz invariance and general covariance, are more subtle and not grounded in our everyday perceptions. But, in any case, in order to find out if Nature employs a certain symmetry, we must compare the implications of the symmetry with observation." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"We intuitively know space to be a smooth continuum, an arena in which the fundamental particles move and interact. This assumption underpins our physical theories, and no experimental evidence has ever contradicted it. However, the possibility that space may not be smooth cannot be excluded." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"Welcome to the strange world of the quantum, where one cannot determine how a particle gets from here to there. Physicists are reduced to bookies, posting odds on the various possibilities." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...