04 November 2023

On Transformations (1975-1999)

 "Every branch of geometry can be defined as the study of properties that are unaltered when a specified figure is given specified symmetry transformations. Euclidian plane geometry, for instance, concerns the study of properties that are 'invariant' when a figure is moved about on the plane, rotated, mirror reflected, or uniformly expanded and contracted. Affine geometry studies properties that are invariant when a figure is 'stretched' in a certain way. Projective geometry studies properties invariant under projection. Topology deals with properties that remain unchanged even when a figure is radically distorted in a manner similar to the deformation of a figure made of rubber." (Martin Gardner, "Aha! Insight", 1978)

"Topology has to do with those properties of a space which are left unchanged by the kind of transformation that we have called a topological equivalence or homeomorphism. But what sort of spaces interest us and what exactly do we mean by a 'space? The idea of a homeomorphism involves very strongly the notion of continuity [...]"  (Mark A Armstrong, "Basic Topology", 1979)

"The relations that define a system as a unity, and determine the dynamics of interaction and transformations which it may undergo as such a unity constitute the organization of the machine."(Humberto Maturana, "Autopoiesis and cognition: The realization of the living", 1980)

"The search for fundamental symmetries boils down to the study of transformations that do not change fundamental physical action - such transformations as reflection, rotation, the Lorentz transformation, and the like." (Anthony Zee, "Fearful Symmetry: The Search for Beauty in Modern Physics", 1986)

"And finally we wish to note that critical economies are associated with bifurcation values of the exogenous parameters of the economy. Critical economies are states at which an economy discontinuously undergoes a structural transformation in the pattern of its equilibria in response to slow changes in parameters. In short, general equilibria are susceptible to catastrophes in the general sense." (J Barkley Rosser Jr., "From Catastrophe to Chaos: A General Theory of Economic Discontinuities", 1991)

"[…] a symmetry isn't a thing; it's a transformation. Not any old transformation, though: a symmetry of an object is a transformation that leaves it apparently unchanged." (Ian Stewart & Martin Golubitsky, "Fearful Symmetry: Is God a Geometer?", 1992)

"To a mathematician, an object possesses symmetry if it retains its form after some transformation. A circle, for example, looks the same after any rotation; so a mathematician says that a circle is symmetric, even though a circle is not really a pattern in the conventional sense - something made up from separate, identical bits. Indeed the mathematician generalizes, saying that any object that retains its form when rotated - such as a cylinder, a cone, or a pot thrown on a potter's wheel - has circular symmetry." (Ian Stewart & Martin Golubitsky,"Fearful Symmetry: Is God a Geometer?", 1992)

"The logarithm is one of many transformations that we can apply to univariate measurements. The square root is another. Transformation is a critical tool for visualization or for any other mode of data analysis because it can substantially simplify the structure of a set of data. For example, transformation can remove skewness toward large values, and it can remove monotone increasing spread. And often, it is the logarithm that achieves this removal." (William S Cleveland, "Visualizing Data", 1993)

"If you start with a number and form its square root, you get another number. The term for such an 'object' is function. You can think of a function as a mathematical rule that starts with a mathematical object-usually a number-and associates to it another object in a specific manner. Functions are often defined using algebraic formulas, which are just shorthand ways to explain what the rule is, but they can be defined by any convenient method. Another term with the same meaning as 'function' is transformation: the rule transforms the first object into the second. […] Operations and functions are very similar concepts. Indeed, on a suitable level of generality there is not much to distinguish them. Both of them are processes rather than things." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"Topology studies the properties of geometrical objects that remain unchanged under transformations called homeomorphisms and deformations." (Victor V Prasolov, "Intuitive Topology", 1995)

"A formal system consists of a number of tokens or symbols, like pieces in a game. These symbols can be combined into patterns by means of a set of rules which defines what is or is not permissible (e.g. the rules of chess). These rules are strictly formal, i.e. they conform to a precise logic. The configuration of the symbols at any specific moment constitutes a ‘state’ of the system. A specific state will activate the applicable rules which then transform the system from one state to another. If the set of rules governing the behaviour of the system are exact and complete, one could test whether various possible states of the system are or are not permissible." (Paul Cilliers, "Complexity and Postmodernism: Understanding Complex Systems", 1998)

"In our analysis of complex systems (like the brain and language) we must avoid the trap of trying to find master keys. Because of the mechanisms by which complex systems structure themselves, single principles provide inadequate descriptions. We should rather be sensitive to complex and self-organizing interactions and appreciate the play of patterns that perpetually transforms the system itself as well as the environment in which it operates." (Paul Cilliers, "Complexity and Postmodernism: Understanding Complex Systems", 1998)

"Cybernetics is the science of effective organization, of control and communication in animals and machines. It is the art of steersmanship, of regulation and stability. The concern here is with function, not construction, in providing regular and reproducible behaviour in the presence of disturbances. Here the emphasis is on families of solutions, ways of arranging matters that can apply to all forms of systems, whatever the material or design employed. [...] This science concerns the effects of inputs on outputs, but in the sense that the output state is desired to be constant or predictable – we wish the system to maintain an equilibrium state. It is applicable mostly to complex systems and to coupled systems, and uses the concepts of feedback and transformations (mappings from input to output) to effect the desired invariance or stability in the result." (Chris Lucas, "Cybernetics and Stochastic Systems", 1999)

"One of the basic tasks of topology is to learn to distinguish nonhomeomorphic figures. To this end one introduces the class of invariant quantities that do not change under homeomorphic transformations of a given figure. The study of the invariance of topological spaces is connected with the solution of a whole series of complex questions: Can one describe a class of invariants of a given manifold? Is there a set of integral invariants that fully characterizes the topological type of a manifold? and so forth." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"Topology studies those characteristics of figures which are preserved under a certain class of continuous transformations. Imagine two figures, a square and a circular disk, made of rubber. Deformations can convert the square into the disk, but without tearing the figure it is impossible to convert the disk by any deformation into an annulus. In topology, this intuitively obvious distinction is formalized." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"Two figures which can be transformed into one other by continuous deformations without cutting and pasting are called homeomorphic. […] The definition of a homeomorphism includes two conditions: continuous and one- to-one correspondence between the points of two figures. The relation between the two properties has fundamental significance for defining such a paramount concept as the dimension of space." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Continuity: Definitions

"The Law of Continuity, as we here deal with it, consists in the idea that [...] any quantity, in passing from one magnitude to another...