03 November 2023

David Spiegelhalter - Collected Quotes

"A classification tree is perhaps the simplest form of algorithm, since it consists of a series of yes/no questions, the answer to each deciding the next question to be asked, until a conclusion is reached." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"Bootstrapping provides an intuitive, computer-intensive way of assessing the uncertainty in our estimates, without making strong assumptions and without using probability theory. But the technique is not feasible when it comes to, say, working out the margins of error on unemployment surveys of 100,000 people. Although bootstrapping is a simple, brilliant and extraordinarily effective idea, it is just too clumsy to bootstrap such large quantities of data, especially when a convenient theory exists that can generate formulae for the width of uncertainty intervals." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"But [bootstrap-based] simulations are clumsy and time-consuming, especially with large data sets, and in more complex circumstances it is not straightforward to work out what should be simulated. In contrast, formulae derived from probability theory provide both insight and convenience, and always lead to the same answer since they don’t depend on a particular simulation. But the flip side is that this theory relies on assumptions, and we should be careful not to be deluded by the impressive algebra into accepting unjustified conclusions." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"[...] data often has some errors, outliers and other strange values, but these do not necessarily need to be individually identified and excluded. It also points to the benefits of using summary measures that are not unduly affected by odd observations [...] are known as robust measures, and include the median and the inter-quartile range." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"Even in an era of open data, data science and data journalism, we still need basic statistical principles in order not to be misled by apparent patterns in the numbers." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"[...] in the statistical world, what we see and measure around us can be considered as the sum of a systematic mathematical idealized form plus some random contribution that cannot yet be explained. This is the classic idea of the signal and the noise." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"It is convenient to use a single number to summarize a steadily increasing or decreasing relationship between the pairs of numbers shown on a scatter-plot. This is generally chosen to be the Pearson correlation coefficient [...]. A Pearson correlation runs between −1 and 1, and expresses how close to a straight line the dots or data-points fall. A correlation of 1 occurs if all the points lie on a straight line going upwards, while a correlation of −1 occurs if all the points lie on a straight line going downwards. A correlation near 0 can come from a random scatter of points, or any other pattern in which there is no systematic trend upwards or downwards [...]." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"It is not enough to give a single summary for a distribution - we need to have an idea of the spread, sometimes known as the variability. [...] The range is a natural choice, but is clearly very sensitive to extreme values [...] In contrast the inter-quartile range (IQR) is unaffected by extremes. This is the distance between the 25th and 75th percentiles of the data and so contains the ‘central half’ of the numbers [...] Finally the standard deviation is a widely used measure of spread. It is the most technically complex measure, but is only really appropriate for well-behaved symmetric data since it is also unduly influenced by outlying values." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"[...] just because we act, and something changes, it doesn’t mean we were responsible for the result. Humans seem to find this simple truth difficult to grasp - we are always keen to construct an explanatory narrative, and even keener if we are at its centre. Of course sometimes this interpretation is true - if you flick a switch, and the light comes on, then you are usually responsible. But sometimes your actions are clearly not responsible for an outcome: if you don’t take an umbrella, and it rains, it is not your fault (although it may feel that way). But the consequences of many of our actions are less clear-cut. [...] We have a strong psychological tendency to attribute change to intervention, and this makes before-and-after comparisons treacherous." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"Mean-averages can be highly misleading when the raw data do not form a symmetric pattern around a central value but instead are skewed towards one side [...], typically with a large group of standard cases but with a tail of a few either very high (for example, income) or low (for example, legs) values." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"Statistical models have two main components. First, a mathematical formula that expresses a deterministic, predictable component, for example the fitted straight line that enables us to make a prediction [...]. But the deterministic part of a model is not going to be a perfect representation of the observed world [...] and the difference between what the model predicts, and what actually happens, is the second component of a model and is known as the residual error - although it is important to remember that in statistical modelling, ‘error’ does not refer to a mistake, but the inevitable inability of a model to exactly represent what we observe." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"[...] the Central Limit Theorem [...] says that the distribution of sample means tends towards the form of a normal distribution with increasing sample size, almost regardless of the shape of the original data distribution." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"The first rule of communication is to shut up and listen, so that you can get to know about the audience for your communication, whether it might be politicians, professionals or the general public. We have to understand their inevitable limitations and any misunderstandings, and fight the temptation to be too sophisticated and clever, or put in too much detail." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"The second rule of communication is to know what you want to achieve. Hopefully the aim is to encourage open debate, and informed decision-making. But there seems no harm in repeating yet again that numbers do not speak for themselves; the context, language and graphic design all contribute to the way the communication is received. We have to acknowledge we are telling a story, and it is inevitable that people will make comparisons and judgements, no matter how much we only want to inform and not persuade. All we can do is try to pre-empt inappropriate gut reactions by design or warning." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"There is no ‘correct’ way to display sets of numbers: each of the plots we have used has some advantages: strip-charts show individual points, box-and-whisker plots are convenient for rapid visual summaries, and histograms give a good feel for the underlying shape of the data distribution." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"This common view of statistics as a basic ‘bag of tools’ is now facing major challenges. First, we are in an age of data science, in which large and complex data sets are collected from routine sources such as traffic monitors, social media posts and internet purchases, and used as a basis for technological innovations such as optimizing travel routes, targeted advertising or purchase recommendation systems [...]. Statistical training is increasingly seen as just one necessary component of being a data scientist, together with skills in data management, programming and algorithm development, as well as proper knowledge of the subject matter." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"Unfortunately, when an ‘average’ is reported in the media, it is often unclear whether this should be interpreted as the mean or median." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"When it comes to presenting categorical data, pie charts allow an impression of the size of each category relative to the whole pie, but are often visually confusing, especially if they attempt to show too many categories in the same chart, or use a three-dimensional representation that distorts areas. [...] Multiple pie charts are generally not a good idea, as comparisons are hampered by the difficulty in assessing the relative sizes of areas of different shapes. Comparisons are better based on height or length alone in a bar chart." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"When we have all the data, it is straightforward to produce statistics that describe what has been measured. But when we want to use the data to draw broader conclusions about what is going on around us, then the quality of the data becomes paramount, and we need to be alert to the kind of systematic biases that can jeopardize the reliability of any claims." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"With the growing availability of massive data sets and user-friendly analysis software, it might be thought that there is less need for training in statistical methods. This would be naïve in the extreme. Far from freeing us from the need for statistical skills, bigger data and the rise in the number and complexity of scientific studies makes it even more difficult to draw appropriate conclusions. More data means that we need to be even more aware of what the evidence is actually worth." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

"We over-fit when we go too far in adapting to local circumstances, in a worthy but misguided effort to be ‘unbiased’ and take into account all the available information. Usually we would applaud the aim of being unbiased, but this refinement means we have less data to work on, and so the reliability goes down. Over-fitting therefore leads to less bias but at a cost of more uncertainty or variation in the estimates, which is why protection against over-fitting is sometimes known as the bias/variance trade-off." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Continuity: Definitions

"The Law of Continuity, as we here deal with it, consists in the idea that [...] any quantity, in passing from one magnitude to another...