"A group is a set along with a rule that tells how to combine any two elements in the set to get another element in the set. We usually use the word composition to describe the act of combining two elements of the group to get a third." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)
"A symmetry is a function that preserves what we feel is important about an object." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)
"Although it is not difficult to count the holes in a real pretzel in your hand, prior to eating it, when a surface pops out of an abstract mathematical construction it can be very difficult to figure out its properties, such as how many holes it has. The cohomology groups can help us to do so." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)
"Lie groups turn up when we study a geometric object with a lot of symmetry, such as a sphere, a circle, or flat spacetime. Because there is so much symmetry, there are many functions from the object to itself that preserve the geometry, and these functions become the elements of the group." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)
"Many people believe that all of mathematics has already been discovered and codified. Mathematicians (they think) do nothing except rearrange the material in different ways for different types of students. This seems to be the result of the cut-and-dried method of teaching mathematics in many high schools and universities. The facts are laid out in the cleanest logical order. Little attempt is made to show how someone once had to invent it all, at first in a confused way, and that only later was it possible to give it this neat form." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)
"Mathematicians are just lucky that elliptic curves are fairly simple - they only involve two variables and no powers higher than the cube - and yet are so rich." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)
"Mathematicians often get bored by a problem after they have fully understood it and have given proofs of their conjectures. Sometimes they even forget the precise details of what they have done after the lapse of years, having refocused their interest in another area. The common notion of the mathematician contemplating timeless truths, thinking over the same proof again and again - Euclid looking on beauty bare - is rarely true in any static sense." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)
"Mathematics is like a game. It has rules, and to enjoy playing or watching it, you have to know and understand the rules. Mathematicians make up the rules as they go along." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)
"One thing mathematicians do is connect concepts that occur in different trains of thought." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)
"Some number patterns, like even and odd numbers, lie on the surface. But the more you learn about numbers, both experimentally and theoretically, the more you discover patterns that are not so obvious. […] After a hidden pattern is exposed, it can be used to find more hidden patterns. At the end of a long chain of patterned reasoning, you can get to very difficult theorems, exploring facts about numbers that you otherwise would not know were true." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)
"Still, in the end, we find ourselves drawn to the beauty of the patterns themselves, and the amazing fact that we humans are smart enough to prove even a feeble fraction of all possible theorems about them. Often, greater than the contemplation of this beauty for the active mathematician is the excitement of the chase. Trying to discover first what patterns actually do or do not occur, then finding the correct statement of a conjecture, and finally proving it - these things are exhilarating when accomplished successfully. Like all risk-takers, mathematicians labor months or years for these moments of success." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)
"The set of complex numbers is another example of a field. It is handy because every polynomial in one variable with integer coefficients can be factored into linear factors if we use complex numbers. Equivalently, every such polynomial has a complex root. This gives us a standard place to keep track of the solutions to polynomial equations." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)
"The word conjecture means 'guess'. The way it is used in mathematics is 'educated guess'." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)
"There is a big debate as to whether logic is part of mathematics or mathematics is part of logic. We use logic to think. We notice that our thinking, when it is valid, goes in certain patterns. These patterns can be studied mathematically. Thus, logic is a part of mathematics, called 'mathematical logic'." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)
"What is a group? It is just a pattern that certain things can exhibit when you have a composition law for always getting a third thing by combining any two others." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)
No comments:
Post a Comment