"A model may be defined as a substitute of any object or system. […] A mental image used in thinking is a model, and it is not the real system. A written description of a system is a model that presents one aspect of reality. The simulation model is logically complete and describes the dynamic behaviour of the system. Models can be broadly classified as (a) physical models and (b) abstract models [..] Mental models and mathematical models are examples of abstract models." (Bilash K Bala et al, "System Dynamics: Modelling and Simulation", 2017)
"Feedback systems are closed loop systems, and the inputs are changed on the basis of output. A feedback system has a closed loop structure that brings back the results of the past action to control the future action. In a closed system, the problem is perceived, action is taken and the result influences the further action. Thus, the distinguishing feature of a closed loop system is a feedback path of information, decision and action connecting the output to input." (Bilash K Bala et al, "System Dynamics: Modelling and Simulation", 2017)
"For a scientist, a model is useful if it generates insight into the structure of [the] real system, makes correct prediction and stimulates meaningful questions for future research. For the public and political leaders, a model is useful if it explains the causes of important problems and provides a basis for designing policy to improve the behaviour of the system. Validity meaning confidence in a model’s usefulness is inherently relative concepts. One must choose between competing models." (Bilash K Bala et al, "System Dynamics: Modelling and Simulation", 2017)
"The goal of a system dynamics approach is to understand how a dynamic pattern of behaviour is generated by a system and to find leverage points within the system structure that have the potential to change the problematic trend to a more desirable one. The key steps in a system dynamics approach are identifying one or more trends that characterise the problem, describing the structure of the system generating the behaviour and finding and testing leverage points in the system to change the problematic behaviour. System dynamics is an appropriate modelling approach for sustainability questions because of the long-term perspective and feedback dynamics inherent in such questions." (Bilash K Bala et al, "System Dynamics: Modelling and Simulation", 2017)
"[…] the system boundary should encompass that portion of the whole system which includes all the important and relevant variables to address the problem and the purpose of policy analysis and design. The scope of the study should be clearly stated in order to identify the causes of the problem for clear understanding of the problem and policies for solving the problem in the short run and long run." (Bilash K Bala et al, "System Dynamics: Modelling and Simulation", 2017)
"There is nothing in either physical or social science about which we have perfect knowledge and information. We can never say that a model is a perfect representation of the reality. On the other hand, we can say that there is nothing of which we know absolutely nothing. So, models should not be judged on an absolute scale but on relative scale if the models clarify our knowledge and provide insights into systems." (Bilash K Bala et al, "System Dynamics: Modelling and Simulation", 2017)
No comments:
Post a Comment