27 December 2023

Manfred Schroeder - Collected Quotes

"A Markov process is a stochastic process in which present events depend on the past only through some finite number of generations. In a first-order Markov process, the influential past is limited to a single earlier generation: the present can be fully accounted for by the immediate past." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] a pink (or white, or brown) noise is the very paradigm of a statistically self-similar process. Phenomena whose power spectra are homogeneous power functions lack inherent time and frequency scales; they are scale-free. There is no characteristic time or frequency -whatever happens in one time or frequency range happens on all time or frequency scales. If such noises are recorded on magnetic tape and played back at various speeds, they sound the same […]" (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"All physical objects that are 'self-similar' have limited self-similarity - just as there are no perfectly periodic functions, in the mathematical sense, in the real world: most oscillations have a beginning and an end (with the possible exception of our universe, if it is closed and begins a new life cycle after every 'big crunch' […]. Nevertheless, self-similarity is a useful  abstraction, just as periodicity is one of the most useful concepts in the sciences, any finite extent notwithstanding." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] an epidemic does not always percolate through an entire population. There is a percolation threshold below which the epidemic has died out before most of the people have." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Apart from power laws, iteration is one of the prime sources of self-similarity. Iteration here means the repeated application of some rule or operation - doing the same thing over and over again. […] A concept closely related to iteration is recursion. In an age of increasing automation and computation, many processes and calculations are recursive, and if a recursive algorithm is in fact repetitious, self-similarity is waiting in the wings."(Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Formally, a Cantor set is defined as a set that is totally disconnected, closed, and perfect. A totally disconnected set is a set that contains no intervals and therefore has no interior points. A closed set is one that contains all its boundary elements. (A boundary element is an element that contains elements both inside and outside the set in arbitrarily small neighborhoods.) A perfect set is a nonempty set that is equal to the set of its accumulation points. All three conditions are met by our middle-third—erasing construction, the original Cantor set." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] homogeneous functions have an interesting scaling property: they reproduce themselves upon rescaling. This scaling invariance can shed light into some of the darker corners of physics, biology, and other sciences, and even illuminate our appreciation of music." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"In a white-noise process, every value of the process (e.g., the successive frequencies of a melody) is completely independent of its past - it is a total surprise. By contrast, in 'brown music' (a term derived from Brownian motion), only the increments are independent of the past, giving rise to a rather boring tune." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"In contrast to gravitation, interatomic forces are typically modeled as inhomogeneous power laws with at least two different exponents. Such laws (and exponential laws, too) are not scale-free; they necessarily introduce a characteristic length, related to the size of the atoms. Power laws also govern the power spectra of all kinds of noises, most intriguing among them the ubiquitous (but sometimes difficult to explain)." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"In physics, there are numerous phenomena that are said to be 'true on all scales', such as the Heisenberg uncertainty relation, to which no exception has been found over vast ranges of the variables involved (such as energy versus time, or momentum versus position). But even when the size ranges are limited, as in galaxy clusters (by the size of the universe) or the magnetic domains in a piece of iron near the transition point to ferromagnetism (by the size of the magnet), the concept true on all scales is an important postulate in analyzing otherwise often obscure observations." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Nature abounds with periodic phenomena: from the motion of a swing to the oscillations of atoms, from the chirping of a grasshopper to the orbits of the heavenly bodies. […] Of course, nothing in nature is exactly periodic. All motion has a beginning and an end, so that, in the mathematical sense, strict periodicity does not exist in the real world. Nevertheless, periodicity has proved to be a supremely useful concept in elucidating underlying laws and mechanisms in many fields." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Percolation is a widespread paradigm. Percolation theory can therefore illuminate a great many seemingly diverse situations. Because of its basically geometric character, it facilitates the analysis of intricate patterns and textures without needless physical complications. And the self-similarity that prevails at critical points permits profitably mining the connection with scaling and fractals." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] physicists have come to appreciate a fourth kind of temporal behavior: deterministic chaos, which is aperiodic, just like random noise, but distinct from the latter because it is the result of deterministic equations. In dynamic systems such chaos is often characterized by small fractal dimensions because a chaotic process in phase space typically fills only a small part of the entire, energetically available space." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] power laws, with integer or fractional exponents, are one of the most fertile fields and abundant sources of self-similarity." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Scaling invariance results from the fact that homogeneous power laws lack natural scales; they do not harbor a characteristic unit (such as a unit length, a unit time, or a unit mass). Such laws are therefore also said to be scale-free or, somewhat paradoxically, 'true on all scales'. Of course, this is strictly true only for our mathematical models. A real spring will not expand linearly on all scales; it will eventually break, at some characteristic dilation length. And even Newton's law of gravitation, once properly quantized, will no doubt sprout a characteristic length." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"The only prerequisite for a self-similar law to prevail in a given size range is the absence of an inherent size scale." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"The unifying concept underlying fractals, chaos, and power laws is self-similarity. Self-similarity, or invariance against changes in scale or size, is an attribute of many laws of nature and innumerable phenomena in the world around us. Self-similarity is, in fact, one of the decisive symmetries that shape our universe and our efforts to comprehend it." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"[…] the world is not complete chaos. Strange attractors often do have structure: like the Sierpinski gasket, they are self-similar or approximately so. And they have fractal dimensions that hold important clues for our attempts to understand chaotic systems such as the weather." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

"Understandably, invariant sets (and their complements) play a crucial role in dynamic systems in general because they tell the most important fact about any initial condition, namely, its eventual fate: will the iterates be bounded, or will they be unstable and diverge? Or will the orbit be periodic or aperiodic?" (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...