"Since a given system can never of its own accord go over into another equally probable state but into a more probable one, it is likewise impossible to construct a system of bodies that after traversing various states returns periodically to its original state, that is a perpetual motion machine." (Ludwig E Boltzmann, "The Second Law of Thermodynamics", [Address to a Formal meeting of the Imperial Academy of Science], 1886)
"Science works by the slow method of the classification of data, arranging the detail patiently in a periodic system into groups of facts, in series like the strata of the rocks. For each series there must be a vocabulary of special words which do not always make good sense when used in another series. But the laws of periodicity seem to hold throughout, among the elements and in every sphere of thought, and we must learn to co-ordinate the whole through our new conception of the reign of relativity." (William H Pallister, "Poems of Science", 1931)
"Finite systems of deterministic ordinary nonlinear differential equations may be designed to represent forced dissipative hydrodynamic flow. Solutions of these equations can be identified with trajectories in phase space. For those systems with bounded solutions, it is found that nonperiodic solutions are ordinarily unstable with respect to small modifications, so that slightly differing initial states can evolve into considerably different states. Systems with bounded solutions are shown to possess bounded numerical solutions. (Edward N Lorenz, "Deterministic Nonperiodic Flow", Journal of the Atmospheric Science 20, 1963)
"All physical objects that are 'self-similar' have limited self-similarity - just as there are no perfectly periodic functions, in the mathematical sense, in the real world: most oscillations have a beginning and an end (with the possible exception of our universe, if it is closed and begins a new life cycle after every 'big crunch' […]. Nevertheless, self-similarity is a useful abstraction, just as periodicity is one of the most useful concepts in the sciences, any finite extent notwithstanding." (Manfred Schroeder, "Fractals, Chaos, Power Laws Minutes from an Infinite Paradise", 1990)
"The digits of pi march to infinity in a predestined yet unfathomable code: they do not repeat periodically, seeming to pop up by blind chance, lacking any perceivable order, rule, reason, or design - ‘random’ integers, ad infinitum." (Richard Preston, "The Mountains of Pi", The New Yorker, March 2, 1992)
"Clearly, however, a zero probability is not the same thing as an impossibility; […] In systems that are now called chaotic, most initial states are followed by nonperiodic behavior, and only a special few lead to periodicity. […] In limited chaos, encountering nonperiodic behavior is analogous to striking a point on the diagonal of the square; although it is possible, its probability is zero. In full chaos, the probability of encountering periodic behavior is zero." (Edward N Lorenz, "The Essence of Chaos", 1993)
"The description of the evolutionary trajectory of dynamical systems as irreversible, periodically chaotic, and strongly nonlinear fits certain features of the historical development of human societies. But the description of evolutionary processes, whether in nature or in history, has additional elements. These elements include such factors as the convergence of existing systems on progressively higher organizational levels, the increasingly efficient exploitation by systems of the sources of free energy in their environment, and the complexification of systems structure in states progressively further removed from thermodynamic equilibrium." (Ervin László et al, "The Evolution of Cognitive Maps: New Paradigms for the Twenty-first Century", 1993)
"There is no question but that the chains of events through which chaos can develop out of regularity, or regularity out of chaos, are essential aspects of families of dynamical systems [...] Sometimes [...] a nearly imperceptible change in a constant will produce a qualitative change in the system’s behaviour: from steady to periodic, from steady or periodic to almost periodic, or from steady, periodic, or almost periodic to chaotic. Even chaos can change abruptly to more complicated chaos, and, of course, each of these changes can proceed in the opposite direction. Such changes are called bifurcations." (Edward Lorenz, "The Essence of Chaos", 1993)
"As with subtle bifurcations, catastrophes also involve a control parameter. When the value of that parameter is below a bifurcation point, the system is dominated by one attractor. When the value of that parameter is above the bifurcation point, another attractor dominates. Thus the fundamental characteristic of a catastrophe is the sudden disappearance of one attractor and its basin, combined with the dominant emergence of another attractor. Any type of attractor static, periodic, or chaotic can be involved in this. Elementary catastrophe theory involves static attractors, such as points. Because multidimensional surfaces can also attract (together with attracting points on these surfaces), we refer to them more generally as attracting hypersurfaces, limit sets, or simply attractors." (Courtney Brown, "Chaos and Catastrophe Theories", 1995)
No comments:
Post a Comment