04 July 2025

On Teaching (1960-1969)

"Every mathematician agrees that every mathematician must know some set theory; the disagreement begins in trying to decide how much is some. [...] The student's task in learning set theory is to steep himself in unfamiliar but essentially shallow generalities till they become so familiar that they can be used with almost no conscious effort. In other words, general set theory is pretty trivial stuff really, but, if you want to be a mathematician, you need some, and here it is; read it, absorb it, and forget it [...] the language and notation are those of ordinary informal mathematics. A more important way in which the naive point of view predominates is that set theory is regarded as a body of facts, of which the axioms are a brief and convenient summary; in the orthodox axiomatic view the logical relations among various axioms are the central objects of study." (Paul R Halmos, "Naive Set Theory", 1960)

"The first [principle], is that a mathematical theory can only he developed axiomatically in a fruitful way when the student has already acquired some familiarity with the corresponding material - a familiarity gained by working long enough with it on a kind of experimental, or semiexperimental basis, i.e. with constant appeal to intuition. The other principle [...]  is that when logical inference is introduced in some mathematical question, it should always he presented with absolute honesty - that is, without trying to hide gaps or flaws in the argument; any other way, in my opinion, is worse than giving no proof at all." (Jean Dieudonné, "Thinking in School Mathematics", 1961)

"The teaching of probabilistic reasoning, so very common and important a feature of modern science, is hardly developed in our educational system before college." (Jerome S Bruner, , "The Process of Education", 1961)

"But both managed to understand mathematics and to make a 'fair' number of contributions to the subject. Rigorous proof is not nearly so important as proving the worth of what we are teaching; and most teachers, instead of being concerned about their failure to be sufficiently rigorous, should really be concerned about their failure to provide a truly intuitive approach.. The general principle, then, is that the rigor should be suited to the mathematical age of the student and not to the age of mathematics." (Morris Kline, "Mathematics: A Cultural Approach", 1962) 

"Creativity is the heart and soul of mathematics at all levels. The collection of special skills and techniques is only the raw material out of which the subject itself grows. To look at mathematics without the creative side of it, is to look at a black-and-white photograph of a Cezanne; outlines may be there, but everything that matters is missing." (Robert C Buck "Teaching Machines and Mathematics Programs",  The American Mathematical Monthly 69, 1962)

"The word model is used as a noun, adjective, and verb, and in each instance it has a slightly different connotation. As a noun 'model' is a representation in the sense in which an architect constructs a small-scale model of a building or a physicist a large-scale model of an atom. As an adjective 'model' implies a degree or perfection or idealization, as in reference to a model home, a model student, or a model husband. As a verb 'to model' means to demonstrate, to reveal, to show what a thing is like." (Russell L Ackoff, "Scientific method: optimizing applied research decisions", 1962)

"Determinants are often advertised to students of elementary mathematics as a computational device of great value and efficiency for solving numerical problems involving systems of linear equations. This is somewhat misleading, for their value in problems of this kind is very limited. On the other hand, they do have definite importance as a theoretical tool. Briefly, they provide a numerical means of distinguishing between singular and non-singular matrices (and operators)." (George F Simmons, "Introduction to Topology and Modern Analysis", 1963)

"Science is a way to teach how something gets to be known, what is not known, to what extent things are known (for nothing is known absolutely), how to handle doubt and uncertainty, what the rules of evidence are, how to think about things so that judgments can be made, how to distinguish truth from fraud, and from show." (Richard P Feynman, "The Problem of Teaching Physics in Latin America", Engineering and Science, 1963)

"Creative activity could be described as a type of learning process where teacher and pupil are located in the same individual." (Arthur Koestler, "Drinkers of Infinity: Essays 1955-1967", 1967)

"Teaching is more difficult than learning because what teaching calls for is this: to let learn. The real teacher, in fact, let nothing else be learned than learning. His conduct, therefore, often produces the impression that we properly learn nothing from him, if by ‘learning’ we now suddenly understand merely the procurement of useful information." (Martin Heidegger, "What is called thinking?", 1968)

"But, really, mathematics is not religion; it cannot be founded on faith. And what was most important, the methods yielding such remarkable results in the hands of the great masters began to lead to errors and paradoxes when employed by their less talented students. The masters were kept from error by their perfect mathematical intuition, that subconscious feeling that often leads to the right answer more quickly than lengthy logical reasoning. But the students did not possess this intuition […]" (Naum Ya. Vilenkin, "Stories about Sets", 1968)

"Science does not exclude faith. […] Science does not teach a harsh materialism. It does not teach anything beyond its boundaries, and those boundaries have been severely limited by science itself." (Vannevar Bush, "Modern Arms and Free Men", 1968)

"Science progresses not only because it helps to explain newly discovered facts, but also because it teaches us over and over again what the word 'understanding' may mean." (Werner K Heisenberg, "Physics and Beyond: Encounters and Conversations", 1969)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Stories (From Fiction to Science-Fiction)

"One mark of a second-rate mind is to be always telling stories." (Jean de La Bruyère, "Les Caractères" Aphorism 52, 168...