"Two types of graphic organizers are commonly used for comparison: the Venn diagram and the comparison matrix [...] the Venn diagram provides students with a visual display of the similarities and differences between two items. The similarities between elements are listed in the intersection between the two circles. The differences are listed in the parts of each circle that do not intersect. Ideally, a new Venn diagram should be completed for each characteristic so that students can easily see how similar and different the elements are for each characteristic used in the comparison." (Robert J. Marzano et al, "Classroom Instruction that Works: Research-based strategies for increasing student achievement, 2001)
"Mathematics is often thought to be difficult and dull. Many people avoid it as much as they can and as a result much of the population is mathematically illiterate. This is in part due to the relative lack of importance given to numeracy in our culture, and to the way that the subject has been presented to students." (Julian Havil , "Gamma: Exploring Euler's Constant", 2003)
"Another aspect of representativeness that is misunderstood or ignored is the tendency of regression to the mean. Stochastic phenomena where the outcomes vary randomly around stable values (so-called stationary processes) exhibit the general tendency that extreme outcomes are more likely to be followed by an outcome closer to the mean or mode than by other extreme values in the same direction. For example, even a bright student will observe that her or his performance in a test following an especially outstanding outcome tends to be less brilliant. Similarly, extremely low or extremely high sales in a given period tend to be followed by sales that are closer to the stable mean or the stable trend." (Hans G Daellenbach & Donald C McNickle, "Management Science: Decision making through systems thinking", 2005)
"Many people believe that all of mathematics has already been discovered and codified. Mathematicians (they think) do nothing except rearrange the material in different ways for different types of students. This seems to be the result of the cut-and-dried method of teaching mathematics in many high schools and universities. The facts are laid out in the cleanest logical order. Little attempt is made to show how someone once had to invent it all, at first in a confused way, and that only later was it possible to give it this neat form." (Avner Ash & Robert Gross, "Fearless Symmetry: Exposing the hidden patterns of numbers", 2006)
"Math is actually very important, but because it genuinely is difficult, nearly all of the teaching slots are occupied with making sure that students learn how to solve certain types of problem and get the answers right. There isn't time to tell them about the history of the subject, about its connections with our culture and society, about the huge quantity of new mathematics that is created every year, or about the unsolved questions, big and little, that litter the mathematical landscape." (Ian Stewart, "Letters to a Young Mathematician", 2006)
"But in mathematics there is a kind of threshold effect, an intellectual tipping point. If a student can just get over the first few humps, negotiate the notational peculiarities of the subject, and grasp that the best way to make progress is to understand the ideas, not just learn them by rote, he or she can sail off merrily down the highway, heading for ever more abstruse and challenging ideas, while an only slightly duller student gets stuck at the geometry of isosceles triangles." (Ian Stewart, "Why Beauty is Truth: A history of symmetry", 2007)
"[…] mathematics is not only to teach the algorithms and skills of mathematics - which we will agree are very important - but also to teach for understanding, with an emphasis on reasoning." (Alfred S Posamentier et al, "Exemplary Practices for Secondary Math Teachers", 2007)
"As students, we learned mathematics from textbooks. In textbooks, mathematics is presented in a rigorous and logical way: definition, theorem, proof, example. But it is not discovered that way. It took many years for a mathematical subject to be understood well enough that a cohesive textbook could be written. Mathematics is created through slow, incremental progress, large leaps, missteps, corrections, and connections." (Richard S Richeson, "Eulers Gem: The Polyhedron Formula and the birth of Topology", 2008)
"Nonetheless, some hesitation persisted. After all, the very word imaginary betrays ambivalence, and suggests that in our heart of hearts we do not believe these numbers exist. On the other hand, by calling every number representable by a decimal expansion real, we are making the psychological distinction more stark. Indeed the adjective imaginary is a somewhat unfortunate one - although an intriguing name, some students’ perceptions are so colored by the word that they consequently fail to come to grips with the idea." (Peter M Higgins, "Number Story: From Counting to Cryptography", 2008)
"What could mathematics and poetry share, except that the mention of either one is sometimes enough to bring an uneasy chill into a conversation? [...] Both fields use analogies - comparisons of all sorts - to explain things, to express unknown or unknowable concepts, and to teach." (Marcia Birken & Anne C Coon, "Discovering Patterns in Mathematics and Poetry", 2008)
"Mathematics is the art of explanation. If you deny students the opportunity to engage in this activity - to pose their own problems, to make their own conjectures and discoveries, to be wrong, to be creatively frustrated, to have an inspiration, and to cobble together their own explanations and proofs - you deny them mathematics itself." (Paul Lockhart, "A Mathematician's Lament", 2009)
No comments:
Post a Comment