Physical Science

"As dangerous as is the desire to systematize in the physical sciences, it is, nevertheless, to be feared that in storing without order a great multiplicity of experiments we obscure the science rather than clarify it, render it difficult of access to those desirous of entering upon it, and finally, obtain at the price of long and tiresome work only disorder and confusion." (Antoine L Lavoisier, "Mémoires de l’Académie Royale des Sciences", 1777)

"Systems in physical science […] are no more than appropriate instruments to aid the weakness of our organs: they are, properly speaking, approximate methods which put us on the path to the solution of the problem; these are the hypotheses which, successively modified, corrected, and changed in proportion as they are found false, should lead us infallibly one day, by a process of exclusion, to the knowledge of the true laws of nature." (Antoine L Lavoisier, "Mémoires de l’Académie Royale des Sciences", 1777)

"The impossibility of separating the nomenclature of a science from the science itself is owing to this, that every branch of physical science must consist of three things: the series of facts which are the objects of the science, the ideas which represent these facts, and the words by which these ideas are expressed. Like three impressions of the same seal, the word ought to produce the idea, and the idea to be a picture of the fact." (Antoine L Lavoisier, "Elements of Chemistry in a New Systematic Order", 1790)

"Mathematical studies […] when combined, as they now generally are, with a taste for physical science, enlarge infinitely our views of the wisdom and power displayed in the universe. The very intimate connexion indeed, which, since the date of the Newtonian philosophy, has existed between the different branches of mathematical and physical knowledge, renders such a character as that of a mere mathematician a very rare and scarcely possible occurrence." (Dugald Stewart, "Elements of the Philosophy of the Human Mind", 1792)

"The domain of physics is no proper field for mathematical pastimes. The best security would be in giving a geometrical training to physicists, who need not then have recourse to mathematicians, whose tendency is to despise experimental science. By this method will that union between the abstract and the concrete be effected which will perfect the uses of mathematical, while extending the positive value of physical science. Meantime, the uses of analysis in physics is clear enough. Without it we should have no precision, and no co-ordination; and what account could we give of our study of heat, weight, light, etc.? We should have merely series of unconnected facts, in which we could foresee nothing but by constant recourse to experiment; whereas, they now have a character of rationality which fits them for purposes of prevision." (Auguste Comte, "The Positive Philosophy", 1830)

"With certain limited exceptions, the laws of physical science are positive and absolute, both in their aggregate, and in their elements, - in their sum, and in their details; but the ascertainable laws of the science of life are approximative only, and not absolute." (Elisha Bartlett, "An Essay on the Philosophy of Medical Science", 1844)

"We must therefore discover some method of investigation which allows the mind at every step to lay hold of a clear physical conception, without being committed to any theory founded on the physical science from which that conception is borrowed, so that it is neither drawn aside from the subject in pursuit of analytical subtleties, nor carried beyond the truth by a favourite hypothesis." (James C Maxwell, "On Faraday’s lines of force", 1855)

"The conception of the inconceivable [imaginary], this measurement of what not only does not, but cannot exist, is one of the finest achievements of the human intellect. No one can deny that such imaginings are indeed imaginary. But they lead to results grander than any which flow from the imagination of the poet. The imaginary calculus is one of the master keys to physical science. These realms of the inconceivable afford in many places our only mode of passage to the domains of positive knowledge. Light itself lay in darkness until this imaginary calculus threw light upon light. And in all modern researches into electricity, magnetism, and heat, and other subtile physical inquiries, these are the most powerful instruments." (Thomas Hill, "The Imagination in Mathematics", North American Review Vol. 85, 1857)

"Isolated facts and experiments have in themselves no value, however great their number may be. They only become valuable in a theoretical or practical point of view when they make us acquainted with the law of a series of uniformly recurring phenomena, or, it may be, only give a negative result showing an incompleteness in our knowledge of such a law, till then held to be perfect." (Hermann von Helmholtz, "The Aim and Progress of Physical Science", 1869)

"In abstract mathematical theorems the approximation to absolute truth is perfect, because we can treat of infinitesimals. In physical science, on the contrary, we treat of the least quantities which are perceptible." (William S Jevons, „The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"In every physical science we have carefully to distinguish between the facts which form its subject-matter and the theories by which we attempt to explain these facts, and group them in our scientific systems." (Josiah P Cooke, "The New Chemistry", 1876)

"There cannot be a greater mistake than that of looking superciliously upon the practical applications of science. The life and soul of science is its practical application; and just as the great advances in mathematics have been made through the desire of discovering the solution of problems which were of a highly practical kind in mathematical science, so in physical science many of the greatest advances that have been made from the beginning of the world to the present time have been made in earnest desire to turn the knowledge of the properties of matter to some purpose useful to mankind." (William T Kelvin, "Electrical Units of Measurement", 1883)

„In abstract mathematical theorems the approximation to absolute truth is perfect, because we can treat of infinitesimals. In physical science, on the contrary, we treat of the least quantities which are perceptible." (William S Jevons, „The Principles of Science: A Treatise on Logic and Scientific Method", 1887)

"Mathematics connect themselves on the one side with common life and physical science; on the other side with philosophy in regard to our notions of space and time, and in the questions which have arisen as to the universality and necessity of the truths of mathematics and the foundation of our knowledge of them." (Arthur Cayley, 1888)

"Everything in physical science, from the law of gravitation to the building of bridges, from the spectroscope to the art of navigation, would be profoundly modified by any considerable inaccuracy in the hypothesis that our actual space is Euclidean. The observed truth of physical science, therefore, constitutes overwhelming empirical evidence that this hypothesis is very approximately correct, even if not rigidly true." (Bertrand Russell, "Foundations of Geometry", 1897)

"The great body of physical science, a great deal of the essential fact of financial science, and endless social and political problems are only accessible and only thinkable to those who have had a sound training in mathematical analysis, and the time may not be very remote when it will be understood that for complete initiation as an efficient citizen of one of the new great complex world-wide States that are now developing, it is as necessary to be able to compute, to think in averages and maxima and minima, as it is now to be able to read and write." (Herbert G Wells, „Mankind in the Making",  1903)

"The most important fundamental laws and facts of physical science have all been discovered, and these are now so firmly established that the possibility of their ever being supplemented in consequence by new discoveries is exceedingly remote." (Albert Michelson, 1903)

"The new mathematics is a sort of supplement to language, affording a means of thought about form and quantity and a means of expression, more exact, compact, and ready than ordinary language. The great body of physical science, a great deal of the essential facts of financial science, and endless social and political problems are only accessible and only thinkable to those who have had a sound training in mathematical analysis, and the time may not be very remote when it will be understood that for complete initiation as an efficient citizen of the great complex world-wide States that are now developing, it is as necessary to be able to compute, to think in averages and maxima and minima, as it is now to be able to read and write." (Herbert G Wells, "Mankind in the Making", 1903)

"[…] the new mathematics is a sort of supplement to language, affording a means of thought about form and quantity and a means of expression, more exact, compact, and ready than ordinary language. The great body of physical science, a great deal of the essential facts of financial science, and endless social and political problems are only accessible and only thinkable to those who have had a sound training in mathematical analysis, and the time may not be very remote when it will be understood that for complete initiation as an efficient citizen of one of the new great complex world wide states that are now developing, it is as necessary to be able to compute, to think in averages and maxima and minima, as it is now to be able to read and to write." (Herbert G Wells, "Mankind In the Making", 1906)

"Physics is not a machine one can take apart; one cannot try each piece in isolation and wait, to adjust it, until its solidity has been minutely checked. Physical science is a system that must be taken as a whole. It is an organism no part of which can be made to function without the remotest parts coming into play, some more, some less, but all in some degree." (Pierre-Maurice-Marie Duhem, 1914)

"Mere deductive logic, whether you clothe it in mathematical symbols and phraseology or whether you enlarge its scope into a more general symbolic technique, can never take the place of clear relevant initial concepts of the meaning of your symbols, and among symbols I include words. If you are dealing with nature, your meanings must directly relate to the immediate facts of observation. We have to analyse first the most general characteristics of things observed, and then the more casual contingent occurrences. There can be no true physical science which looks first to mathematics for the provision of a conceptual model. Such a procedure is to repeat the errors of the logicians of the middle-ages." (Alfred N Whitehead, "Principle of Relativity", 1922)

"The exploration of the external world by the methods of physical science leads not to a concrete reality but to a shadow world of symbols, beneath which those methods are unadapted for penetrating." (Arthur S Eddington, "Science and the Unseen World", 1929)

"[…] the main object of physical science is not the provision of pictures, but in the formulation of laws governing phenomena and the application of these laws to the discovery of new phenomena. If a picture exists, so much the better; but whether a picture exists or not is a matter of only secondary importance. In the case of atomic phenomena no picture can be expected to exist in the usual sense of the word ‘picture’, by which is meant to model functioning essentially on classical lines. One may extend the meaning of the word ‘picture’ to include any way of looking at the fundamental laws which make their self-consistency obvious. With this extension, one may acquire a picture of atomic phenomena by becoming familiar with the laws of quantum theory." (Paul A M Dirac, "The Principles of Quantum Mechanics", 1930)

"The fundamental concepts of physical science, it is now understood, are abstractions, framed by our mind, so as to bring order to an apparent chaos of phenomena." (Sir William C Dampier, "A History of Science and its Relations with Philosophy & Religion", 1931)

"[…] the process of scientific discovery may be regarded as a form of art. This is best seen in the theoretical aspects of Physical Science. The mathematical theorist builds up on certain assumptions and according to well understood logical rules, step by step, a stately edifice, while his imaginative power brings out clearly the hidden relations between its parts. A well-constructed theory is in some respects undoubtedly an artistic production." (Ernest Rutherford, 1932)

"No doctrinal system in physical science, or indeed perhaps in any science, will alter its content of its own accord. Here we always need the pressure of outer circumstances. Indeed the more intelligible and comprehensive a theoretical system is the more obstinately it will resist all attempts at reconstruction or expansion."  (Max Planck, "Where is Science Going?", 1932)

"The discoveries in physical science, the triumphs in invention, attest the value of the process of trial and error. In large measure, these advances have been due to experimentation." (Louis Brandeis, "Judicial opinions", 1932)

"The revolution in scientific ideas just mentioned is primarily logical. It is due to recognition that the very method of physical science, with its primary standard units of mass, space, and time, is concerned with measurements of relations of change, not with individuals as such." (John Dewey, "Time and Individuality", 1940)

"Without the clear understanding that equations in physical science always have hidden limitations, we cannot expect to interpret or apply them successfully." (Duane H D Roller, "Foundations of Modern Physical Science", 1950)

"The heart of all major discoveries in the physical sciences is the discovery of novel methods of representation and so of fresh techniques by which inferences can be drawn - and drawn in ways which fit the phenomena under investigation." (Stephen Toulmin, "The Philosophy of Science", 1957)

"The exact verbal definition of qualitative concepts is more often the province of philosophy than of physical science." (Ronnie Bell, "The Proton in Chemistry", 1959)

"System theory is basically concerned with problems of relationships, of structure, and of interdependence rather than with the constant attributes of objects. In general approach it resembles field theory except that its dynamics deal with temporal as well as spatial patterns. Older formulations of system constructs dealt with the closed systems of the physical sciences, in which relatively self-contained structures could be treated successfully as if they were independent of external forces. But living systems, whether biological organisms or social organizations, are acutely dependent on their external environment and so must be conceived of as open systems." (Daniel Katz, "The Social Psychology of Organizations", 1966)

"One aim of the physical sciences has been to give an exact picture of the material world. One achievement of physics in the twentieth century has been to prove that that aim is unattainable." (Jacob Bronowski, "The Ascent of Man", 1973)

"Whether mathematical simplicity is God’s affair or our, the fact remains that this feature more than any other remains the mainspring of progress in the physical sciences." (Paul C W Davies, "The Edge of Infinity", 1981)

"All scientific theories, even those in the physical sciences, are developed in a particular cultural context. Although the context may help to explain the persistence of a theory in the face of apparently falsifying evidence, the fact that a theory arises from a particular context is not sufficient to condemn it. Theories and paradigms must be accepted, modified or rejected on the basis of evidence."  (Richard P Bentall,  "Madness Explained: Psychosis and Human Nature", 2003)

"In an information economy, entrepreneurs master the science of information in order to overcome the laws of the purely physical sciences. They can succeed because of the surprising power of the laws of information, which are conducive to human creativity. The central concept of information theory is a measure of freedom of choice. The principle of matter, on the other hand, is not liberty but limitation - it has weight and occupies space." (George Gilder, "Knowledge and Power: The Information Theory of Capitalism and How it is Revolutionizing our World", 2013)





No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...