Differential Equations

"Thus, differential calculus has all the exactitude of other algebraic operations." (Pierre-Simon Laplace, "A Philosophical Essay on Probabilities", 1814)

"The integrals which we have obtained are not only general expressions which satisfy the differential equation, they represent in the most distinct manner the natural effect which is the object of the phenomenon [...] when this condition is fulfilled, the integral is, properly speaking, the equation of the phenomenon; it expresses clearly the character and progress of it, in the same manner as the finite equation of a line or curved surface makes known all the properties of those forms." (Jean-Baptiste-Joseph Fourier, "Théorie Analytique de la Chaleur", 1822)

"Algebra, as an art, can be of no use to any one in the business of life; certainly not as taught in the schools. I appeal to every man who has been through the school routine whether this be not the case. Taught as an art it is of little use in the higher mathematics, as those are made to feel who attempt to study the differential calculus without knowing more of the principles than is contained in books of rules." (Augustus de Morgan, "Elements of Algebra", 1837)

"Any progress in the theory of partial differential equations must also bring about a progress in Mechanics." (Carl G J Jacobi, "Vorlesungen über Dynamik" ["Lectures on Dynamics"], 1843)

"If one looks at the different problems of the integral calculus which arise naturally when he wishes to go deep into the different parts of physics, it is impossible not to be struck by the analogies existing. Whether it be electrostatics or electrodynamics, the propagation of heat, optics, elasticity, or hydrodynamics, we are led always to differential equations of the same family." (Henri Poincaré, "Sur les Equations aux Dérivées Partielles de la Physique Mathématique", American Journal of Mathematics Vol. 12, 1890)

"Most surprising and far-reaching analogies revealed themselves between apparently quite disparate natural processes. It seemed that nature had built the most various things on exactly the same pattern; or, in the dry words of the analyst, the same differential equations hold for the most various phenomena. (Ludwig Boltzmann, "On the methods of theoretical physics", 1892)

"The power of differential calculus is that it linearizes all problems by going back to the 'infinitesimally small', but this process can be used only on smooth manifolds. Thus our distinction between the two senses of rotation on a smooth manifold rests on the fact that a continuously differentiable coordinate transformation leaving the origin fixed can be approximated by a linear transformation at О and one separates the (nondegenerate) homogeneous linear transformations into positive and negative according to the sign of their determinants. Also the invariance of the dimension for a smooth manifold follows simply from the fact that a linear substitution which has an inverse preserves the number of variables." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"The works of the highest faculty of man, judgment, is always directed toward the constant limiting of the infinite, toward the breaking up of the infinite into comfortably digestible portions, differentials." (Yevgeny Zamyatin, "We", 1921)

"The conception of tensors is possible owing to the circumstance that the transition from one co-ordinate system to another expresses itself as a linear transformation in the differentials. One here uses the exceedingly fruitful mathematical device of making a problem 'linear' by reverting to infinitely small quantities." (Hermann Weyl, "Space - Time - Matter", 1922)

"The difficulty involved is that the proper and adequate means of describing changes in continuous deformable bodies is the method of differential equations. […] They express mathematically the physical concept of contiguous action." (Max Born, "Einstein’s Theory of Relativity", 1922)

"It seems to be the impression among students that mathematical physics consists in deriving a large number of partial differential equations and then solving them, individually, by an assortment of special mutually unrelated devices. It has not been made clear that there is any underlying unity of method and one has often been left entirely in the dark as to what first suggested a particular device to the mind of its inventor." (Arthur G Webster, "Partial Differential Equations of Mathematical Physics", 1927)

"Scientific laws, when we have reason to think them accurate, are different in form from the common-sense rules which have exceptions: they are always, at least in physics, either differential equations or statistical averages." (Bertrand Russell, "The Analysis of Matter", 1927)

"The method of successive approximations is often applied to proving existence of solutions to various classes of functional equations; moreover, the proof of convergence of these approximations leans on the fact that the equation under study may be majorised by another equation of a simple kind. Similar proofs may be encountered in the theory of infinitely many simultaneous linear equations and in the theory of integral and differential equations. Consideration of the semiordered spaces and operations between them enables us to easily develop a complete theory of such functional equations in abstract form." (Leonid Kantorovich, "On one class of functional equations", 1936)

"Matter-of-fact is an abstraction, arrived at by confining thought to purely formal relations which then masquerade as the final reality. This is why science, in its perfection, relapses into the study of differential equations. The concrete world has slipped through the meshes of the scientific net." (Alfred N Whitehead, "Modes of Thought", 1938)

"The emphasis on mathematical methods seems to be shifted more towards combinatorics and set theory - and away from the algorithm of differential equations which dominates mathematical physics." (Oskar Morgenstern, "Theory of Games and Economic Behavior", 1944)

"In order to solve a differential equation you look at it till a solution occurs to you." (George Pólya, "How to Solve It: A New Aspect of Mathematical Method", 1945)

"The emphasis on mathematical methods seems to be shifted more towards combinatorics and set theory - and away from the algorithm of differential equations which dominates mathematical physics." (John von Neumann & Oskar Morgenstern, "Theory of Games and Economic Behavior", 1947)

"If God has made the world a perfect mechanism, He has at least conceded so much to our imperfect intellect that in order to predict little parts of it, we need not solve innumerable differential equations, but can use dice with fair success." (Max Born, "Albert Einstein: Philosopher-Scientist", 1949)

"Part of the charm in solving a differential equation is in the feeling that we are getting something for nothing. So little information appears to go into the solution that there is a sense of surprise over the extensive results that are derived." (George R Stibitz & Jules A Larrivee, "Mathematics and Computers", 1957)

"Finite systems of deterministic ordinary nonlinear differential equations may be designed to represent forced dissipative hydrodynamic flow. Solutions of these equations can be identified with trajectories in phase space. For those systems with bounded solutions, it is found that nonperiodic solutions are ordinarily unstable with respect to small modifications, so that slightly differing initial states can evolve into considerably different states. Systems with bounded solutions are shown to possess bounded numerical solutions. (Edward N Lorenz, "Deterministic Nonperiodic Flow", Journal of the Atmospheric Science 20, 1963)

"We completely agree that description by differential equations is not only a clumsy but, in principle, inadequate way to deal with many problems of organization." (Ludwig von Bertalanffy, "General System Theory", 1968) 

"A system may be specified in either of two ways. In the first, which we shall call a state description, sets of abstract inputs, outputs and states are given, together with the action of the inputs on the states and the assignments of outputs to states. In the second, which we shall call a coordinate description, certain input, output and state variables are given, together with a system of dynamical equations describing the relations among the variables as functions of time. Modern mathematical system theory is formulated in terms of state descriptions, whereas the classical formulation is typically a coordinate description, for example a system of differential equations." (E S Bainbridge, "The Fundamental Duality of System Theory", 1975)

"General systems theory deals with the most fundamental concepts and aspects of systems. Many theories dealing with more specific types of systems (e. g., dynamical systems, automata, control systems, game-theoretic systems, among many others) have been under development for quite some time. General systems theory is concerned with the basic issues common to all these specialized treatments. Also, for truly complex phenomena, such as those found predominantly in the social and biological sciences, the specialized descriptions used in classical theories (which are based on special mathematical structures such as differential or difference equations, numerical or abstract algebras, etc.) do not adequately and properly represent the actual events. Either because of this inadequate match between the events and types of descriptions available or because of the pure lack of knowledge, for many truly complex problems one can give only the most general statements, which are qualitative and too often even only verbal. General systems theory is aimed at providing a description and explanation for such complex phenomena." (Mihajlo D. Mesarovic & Yasuhiko Takahare, "General Systems Theory: Mathematical foundations", 1975)

"The chief difficulty of modern theoretical physics resides not in the fact that it expresses itself almost exclusively in mathematical symbols, but in the psychological difficulty of supposing that complete nonsense can be seriously promulgated and transmitted by persons who have sufficient intelligence of some kind to perform operations in differential and integral calculus […]" (Celia Green, "The Decline and Fall of Science", 1976)

"The successes of the differential equation paradigm were impressive and extensive. Many problems, including basic and important ones, led to equations that could be solved. A process of self-selection set in, whereby equations that could not be solved were automatically of less interest than those that could." (Ian Stewart, "Does God Play Dice? The Mathematics of Chaos", 1989)

"What is the origin of the urge, the fascination that drives physicists, mathematicians, and presumably other scientists as well? Psychoanalysis suggests that it is sexual curiosity. You start by asking where little babies come from, one thing leads to another, and you find yourself preparing nitroglycerine or solving differential equations. This explanation is somewhat irritating, and therefore probably basically correct." (David Ruelle, "Chance and Chaos", 1991)

"Dynamical systems that vary continuously, like the pendulum and the rolling rock, and evidently the pinball machine when a ball’s complete motion is considered, are technically known as flows. The mathematical tool for handling a flow is the differential equation. A system of differential equations amounts to a set of formulas that together express the rates at which all of the variables are currently changing, in terms of the current values of the variables." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Dynamical systems that vary in discrete steps […] are technically known as mappings. The mathematical tool for handling a mapping is the difference equation. A system of difference equations amounts to a set of formulas that together express the values of all of the variables at the next step in terms of the values at the current step. […] For mappings, the difference equations directly express future states in terms of present ones, and obtaining chronological sequences of points poses no problems. For flows, the differential equations must first be solved. General solutions of equations whose particular solutions are chaotic cannot ordinarily be found, and approximations to the latter are usually determined by numerical methods." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Mathematicians typically do not feel that they have completely solved a system of differential equations until they have written down a general solution - a set of formulas giving the value of each variable at every time, in terms of the supposedly known values at some initial time." (Edward N Lorenz, "The Essence of Chaos", 1993)

"The results of mathematics are seldom directly applied; it is the definitions that are really useful. Once you learn the concept of a differential equation, you see differential equations all over, no matter what you do. This you cannot see unless you take a course in abstract differential equations. What applies is the cultural background you get from a course in differential equations, not the specific theorems. If you want to learn French, you have to live the life of France, not just memorize thousands of words. If you want to apply mathematics, you have to live the life of differential equations. When you live this life, you can then go back to molecular biology with a new set of eyes that will see things you could not otherwise see." (Gian-Carlo Rota, "Indiscrete Thoughts", 1997)

"Following the traditional classification in the field of control systems, a system that describes the input-output behavior in a way similar to a mathematical mapping without involving a differential operator or equation is called a static system. In contrast, a system described by a differential operator or equation is called a dynamic system." (Guanrong Chen & Trung Tat Pham, "Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems", 2001)

"If you assume continuity, you can open the well-stocked mathematical toolkit of continuous functions and differential equations, the saws and hammers of engineering and physics for the past two centuries (and the foreseeable future)." (Benoît Mandelbrot, "The (Mis)Behaviour of Markets: A Fractal View of Risk, Ruin and Reward", 2004)

"Complex systems defy intuitive solutions. Even a third-order, linear differential equation is unsolvable by inspection. Yet, important situations in management, economics, medicine, and social behavior usually lose reality if simplified to less than fifth-order nonlinear dynamic systems. Attempts to deal with nonlinear dynamic systems using ordinary processes of description and debate lead to internal inconsistencies. Underlying assumptions may have been left unclear and contradictory, and mental models are often logically incomplete. Resulting behavior is likely to be contrary to that implied by the assumptions being made about' underlying system structure and governing policies." (Jay W Forrester, "Modeling for What Purpose?", The Systems Thinker Vol. 24 (2), 2013)

"Among all of the mathematical disciplines the theory of differential  equations is the most important […]. It furnishes the explanation of all those elementary manifestations of nature which involve time."  (Sophus Lie)

"If God has made the world a perfect mechanism, He has at least conceded so much to our imperfect intellects that in order to predict little parts of it, we need not solve innumerable differential equations, but can use dice with fair success." (Max Born)

"Nothing has afforded me so convincing a proof of the unity of the Deity as these purely mental conceptions of numerical and mathematical science which have been by slow degrees vouchsafed to man, and are still granted in these latter times by the Differential Calculus, now superseded by the Higher Algebra, all of which must have existed in that sublimely omniscient Mind from eternity." (Mary Somerville)

"Science is a differential equation. Religion is a boundary condition." (Alan Turing)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Chance: Definitions

"Chance is necessity hidden behind a veil." (Marie von Ebner-Eschenbach, Aphorisms, 1880/1893) "Chance is only the measure of...