29 June 2025

On Idealization: Systems Theory

"It is difficult, however, to learn all these things from situations such as occur in everyday life. What we need is a series of abstract and quite impersonal situations to argue about in which one side is surely right and the other surely wrong. The best source of such situations for our purposes is geometry. Consequently we shall study geometric situations in order to get practice in straight thinking and logical argument, and in order to see how it is possible to arrange all the ideas associated with a given subject in a coherent, logical system that is free from contradictions. That is, we shall regard the proof of each proposition of geometry as an example of correct method in argumentation, and shall come to regard geometry as our ideal of an abstract logical system. Later, when we have acquired some skill in abstract reasoning, we shall try to see how much of this skill we can apply to problems from real life." (George D Birkhoff & Ralph Beately, "Basic Geometry", 1940)

"A material model is the representation of a complex system by a system which is assumed simpler and which is also assumed to have some properties similar to those selected for study in the original complex system. A formal model is a symbolic assertion in logical terms of an idealised relatively simple situation sharing the structural properties of the original factual system." (Arturo Rosenblueth & Norbert Wiener, "The Role of Models in Science", Philosophy of Science Vol. 12 (4), 1945)

"To call a model an idealization is to suggest that the model is a simplification of what occurs in reality, usually a simplification which omits some relevant features, such as the extended mass of the planets or, in the example of the circuit model, the resistance in the bypass capacitor. Sometimes the omitted factors make only an insignificant contribution to the effect under study. But that does not seem to be essential to idealizations, especially to the idealizations that in the end are applied by engineers to study real things. In calling something an idealization it seems not so important that the contributions from omitted factors be small, but that they be ones for which we know how to correct. If the idealization is to be of use, when the time comes to apply it to a real system we had better know how to add back the contributions of the factors that have been left out. In that case the use of idealizations does not seem to counter realism: either the omitted factors do not matter much, or in principle we know how to treat them." (Nancy Cartwright, "How the Laws of Physics Lie", 1983)

"[…] if a system is sufficiently complicated, the time it takes to return near a state already visited is huge (think of the hundred fleas on the checkerboard). Therefore if you look at the system for a moderate amount of time, eternal return is irrelevant, and you had better choose another idealization." (David Ruelle, "Chance and Chaos", 1991)

"Formulation of a mathematical model is the first step in the process of analyzing the behaviour of any real system. However, to produce a useful model, one must first adopt a set of simplifying assumptions which have to be relevant in relation to the physical features of the system to be modelled and to the specific information one is interested in. Thus, the aim of modelling is to produce an idealized description of reality, which is both expressible in a tractable mathematical form and sufficiently close to reality as far as the physical mechanisms of interest are concerned." (Francois Axisa, "Discrete Systems" Vol. I, 2001)

"A first important remark is that nature gives us mathematical hints. […] A second important remark is that mathematical physics deals with idealized systems. […] The third important remark is that nature may hint at a theorem but does not state clearly under which conditions is true." (David Ruelle, "The Mathematician's Brain", 2007)

"Abstract formulations of simply stated concrete ideas are often the result of efforts to create idealized models of complex systems. The models are 'idealized' in the sense that they retain only the most fundamental properties of the original systems. The vocabulary is chosen to be as inclusive as possible so that research into the model reveals facts about a wide variety of similar systems. Unfortunately, it is often the case that over time the connection between a model and the systems on which it was based is lost, and the interested reader is faced with something that looks as if it were created to be deliberately complicated - deliberately confusing - but the original intention was just the opposite. Often, the model was devised to be simpler and more transparent than any of the systems on which it was based." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)

"Stated loosely, models are simplified, idealized and approximate representations of the structure, mechanism and behavior of real-world systems. From the standpoint of set-theoretic model theory, a mathematical model of a target system is specified by a nonempty set - called the model’s domain, endowed with some operations and relations, delineated by suitable axioms and intended empirical interpretation." (Zoltan Domotor, "Mathematical Models in Philosophy of Science" [Mathematics of Complexity and Dynamical Systems, 2012])

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Idealization: Systems Theory

"It is difficult, however, to learn all these things from situations such as occur in everyday life. What we need is a series of abstra...