28 June 2025

On Idealization: Mathematics

"The belief that mathematics, because it is abstract, because it is static and cold and gray, is detached from life, is a mistaken belief. Mathematics, even in its purest and most abstract estate, is not detached from life. It is just the ideal handling of the problems of life, as sculpture may idealize a human figure or as poetry or painting may idealize a figure or a scene. Mathematics is precisely the ideal handling of the problems of life, and the central ideas of the science, the great concepts about which its stately doctrines have been built up, are precisely the chief ideas with which life must always deal and which, as it tumbles and rolls about them through time and space, give it its interests and problems, and its order and rationality. " (Cassius J Keyser, "The Humanization of the Teaching of Mathematics", 1912)

"We may be thinking out a chain of reasoning in abstract Geometry, but if we draw a figure, as we usually must do in order to fix our ideas and prevent our attention from wandering owing to the difficulty of keeping a long chain of syllogisms in our minds, it is excusable if we are apt to forget that we are not in reality reasoning about the objects in the figure, but about objects which ore their idealizations, and of which the objects in the figure are only an imperfect representation. Even if we only visualize, we see the images of more or less gross physical objects, in which various qualities irrelevant for our specific purpose are not entirely absent, and which are at best only approximate images of those objects about which we are reasoning." (Ernest W Hobson, "Squaring the Circle", 1913)

"It is difficult, however, to learn all these things from situations such as occur in everyday life. What we need is a series of abstract and quite impersonal situations to argue about in which one side is surely right and the other surely wrong. The best source of such situations for our purposes is geometry. Consequently we shall study geometric situations in order to get practice in straight thinking and logical argument, and in order to see how it is possible to arrange all the ideas associated with a given subject in a coherent, logical system that is free from contradictions. That is, we shall regard the proof of each proposition of geometry as an example of correct method in argumentation, and shall come to regard geometry as our ideal of an abstract logical system. Later, when we have acquired some skill in abstract reasoning, we shall try to see how much of this skill we can apply to problems from real life." (George D Birkhoff & Ralph Beately, "Basic Geometry", 1940)

"There is a logic of language and a logic of mathematics. The former is supple and lifelike, it follows our experience. The latter is abstract and rigid, more ideal. The latter is perfectly necessary, perfectly reliable: the former is only sometimes reliable and hardly ever systematic. But the logic of mathematics achieves necessity at the expense of living truth, it is less real than the other, although more certain. It achieves certainty by a flight from the concrete into abstraction." (Thomas Merton, "The Secular Journal of Thomas Merton", 1959)

"[…] mathematics is not portraying laws inherent in the design of the universe but is merely providing man-made schemes or models which we can use to deduce conclusions about our world only to the extent that the model is a good idealization." (Morris Kline, "Mathematics for the Nonmathematician", 1967)

"This distinction between regular and catastrophic points is obviously somewhat arbitrary because it depends on the fineness of the observation used. One might object, not without reason, that each point is catastrophic to sufficiently sensitive observational techniques. This is why the distinction is an idealization, to be made precise by a mathematical model, and to this end we summarize some ideas of qualitative dynamics." (René F Thom, "Structural Stability and Morphogenesis", 1972)

"For the mathematician, the physical way of thinking is merely the starting point in a process of abstraction or idealization. Instead of being a dot on a piece of paper or a particle of dust suspended in space, a point becomes, in the mathematician's ideal way of thinking, a set of numbers or coordinates. In applied mathematics we must go much further with this process because the physical problems under consideration are more complex. We first view a phenomenon in the physical way, of course, but we must then go through a process of idealization to arrive at a more abstract representation of the phenomenon which will be amenable to mathematical analysis." (Peter Lancaster, "Mathematics: Models of the Real World", 1976)

"In the limit of idealization, all of mathematics can be regarded as the collection of grammatically correct potential texts in a formal language." (Yuri I Manin, "Mathematics and Physics", 1981)

"Since geometry is the mathematical idealization of space, a natural way to organize its study is by dimension. First we have points, objects of dimension O. Then come lines and curves, which are one-dimensional objects, followed by two-dimensional surfaces, and so on. A collection of such objects from a given dimension forms what mathematicians call a 'space'. And if there is some notion enabling us to say when two objects are 'nearby' in such a space, then it's called a topological space." (John L Casti, "Five Golden Rules", 1995)

"The real numbers are one of the most audacious idealizations made by the human mind, but they were used happily for centuries before anybody worried about the logic behind them. Paradoxically, people worried a great deal about the next enlargement of the number system, even though it was entirely harmless. That was the introduction of square roots for negative numbers, and it led to the 'imaginary' and 'complex' numbers. A professional mathematican should never leave home without them […]" (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"Models can be: formulations, abstractions, replicas, idealizations, metaphors - and combinations of these. [...] Some mathematical models have been blindly used - their presuppositions as little understood as any legal fine print one ‘agrees to’ but never reads - with faith in their trustworthiness. The very arcane nature of some of the formulations of these models might have contributed to their being given so much credence. If so, we mathematicians have an important mission to perform: to help people who wish to think through the fundamental assumptions underlying models that are couched in mathematical language, making these models intelligible, rather than (merely) formidable Delphic oracles." (Barry Mazur, "The Authority of the Incomprehensible" , 2014)

“A mathematical model is a mathematical description (often by means of a function or an equation) of a real-world phenomenon such as the size of a population, the demand for a product, the speed of a falling object, the concentration of a product in a chemical reaction, the life expectancy of a person at birth, or the cost of emission reductions. The purpose of the model is to understand the phenomenon and perhaps to make predictions about future behavior. [...] A mathematical model is never a completely accurate representation of a physical situation - it is an idealization." (James Stewart, “Calculus: Early Transcedentals” 8th Ed., 2016)

"We feel we are discovering mathematics. The results are there, waiting for us. They have been inherent in the figures all along. We are not inventing them. […] we are discovering facts that already exist, that are inherent in the objects we study. Although we have creative freedom to invent the objects themselves - to create idealizations like perfect spheres and circles and cylinders - once we do, they take on lives of their own." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Idealization: Representation

"We may be thinking out a chain of reasoning in abstract Geometry, but if we draw a figure, as we usually must do in order to fix our i...