28 June 2025

On Idealization: Representation

"We may be thinking out a chain of reasoning in abstract Geometry, but if we draw a figure, as we usually must do in order to fix our ideas and prevent our attention from wandering owing to the difficulty of keeping a long chain of syllogisms in our minds, it is excusable if we are apt to forget that we are not in reality reasoning about the objects in the figure, but about objects which ore their idealizations, and of which the objects in the figure are only an imperfect representation. Even if we only visualize, we see the images of more or less gross physical objects, in which various qualities irrelevant for our specific purpose are not entirely absent, and which are at best only approximate images of those objects about which we are reasoning." (Ernest W Hobson, "Squaring the Circle", 1913)

"We realize, however, that all scientific laws merely represent abstractions and idealizations expressing certain aspects of reality. Every science means a schematized picture of reality, in the sense that a certain conceptual construct is unequivocally related to certain features of order in reality […]" (Ludwig von Bertalanffy, "General System Theory", 1968)

"For the mathematician, the physical way of thinking is merely the starting point in a process of abstraction or idealization. Instead of being a dot on a piece of paper or a particle of dust suspended in space, a point becomes, in the mathematician's ideal way of thinking, a set of numbers or coordinates. In applied mathematics we must go much further with this process because the physical problems under consideration are more complex. We first view a phenomenon in the physical way, of course, but we must then go through a process of idealization to arrive at a more abstract representation of the phenomenon which will be amenable to mathematical analysis." (Peter Lancaster, "Mathematics: Models of the Real World", 1976)

"[…] it does not seem helpful just to say that all models are wrong. The very word model implies simplification and idealization. The idea that complex physical, biological or sociological systems can be exactly described by a few formulae is patently absurd. The construction of idealized representations that capture important stable aspects of such systems is, however, a vital part of general scientific analysis and statistical models, especially substantive ones, do not seem essentially different from other kinds of model." (Sir David Cox, "Comment on ‘Model uncertainty, data mining and statistical inference’", Journal of the Royal Statistical Society, Series A 158, 1995)

"Through modeling, scientists manipulate symbols with meanings to represent an environment with structure. Such manipulations take place to fulfill a human need, solve a problem, or create a product. When constructing a model, one works in the cognitive space of ideas. Models are used to encapsulate, highlight, replicate or represent patterns of events and the structures of things. Of course, no model provides an exact duplication of the subject matter being modeled. Details are hidden, features are skewed, and certain properties are emphasized. Models are abstract and idealized. As an abstraction, a model omits some features of the subject matter, while retaining only significant properties. As an idealization, a model depicts a subject's properties in a more perfect form." (Daniel Rothbart [Ed.], "Modeling: Gateway to the Unknown", 2004)

"The intent of these representations is to capture the relevant characteristics of reality, which may overlap but are not identical in each case. The engineer has to ascertain what those are, and then incorporate appropriate assumptions and simplifications accordingly. Two common strategies are abstraction, which involves neglecting certain aspects of reality in order to gain a better understanding of the remaining aspects; and idealization, which involves replacing a complicated and/or complex aspect of reality with a simplified version." (Jon A Schmidt, "Representation and Reality", Structure [magazine], 2015)

“A mathematical model is a mathematical description (often by means of a function or an equation) of a real-world phenomenon such as the size of a population, the demand for a product, the speed of a falling object, the concentration of a product in a chemical reaction, the life expectancy of a person at birth, or the cost of emission reductions. The purpose of the model is to understand the phenomenon and perhaps to make predictions about future behavior. [...] A mathematical model is never a completely accurate representation of a physical situation - it is an idealization." (James Stewart, “Calculus: Early Transcedentals” 8th Ed., 2016)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Idealization: Representation

"We may be thinking out a chain of reasoning in abstract Geometry, but if we draw a figure, as we usually must do in order to fix our i...