04 December 2020

Fuzzy Logic I

"A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is characterized by a membership (characteristic) function which assigns to each object a grade of membership ranging between zero and one. The notions of inclusion, union, intersection, complement, relation, convexity, etc., are extended to such sets, and various properties of these notions in the context of fuzzy sets are established. In particular, a separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"The notion of a fuzzy set provides a convenient point of departure for the construction of a conceptual framework which parallels in many respects the framework used in the case of ordinary sets, but is more general than the latter and, potentially, may prove to have a much wider scope of applicability, particularly in the fields of pattern classification and information processing. Essentially, such a framework provides a natural way of dealing with problems in which the source of imprecision is the absence of sharply denned criteria of class membership rather than the presence of random variables." (Lotfi A Zadeh, "Fuzzy Sets", 1965)

"In general, complexity and precision bear an inverse relation to one another in the sense that, as the complexity of a problem increases, the possibility of analysing it in precise terms diminishes. Thus 'fuzzy thinking' may not be deplorable, after all, if it makes possible the solution of problems which are much too complex for precise analysis." (Lotfi A Zadeh, "Fuzzy languages and their relation to human intelligence", 1972)

"Let me say quite categorically that there is no such thing as a fuzzy concept. [...] We do talk about fuzzy things but they are not scientific concepts. Some people in the past have discovered certain interesting things, formulated their findings in a non-fuzzy way, and therefore we have progressed in science." (Rudolf E Kálmán, 1972)

"[Fuzzy logic is] a logic whose distinguishing features are (1) fuzzy truth-values expressed in linguistic terms, e. g., true, very true, more or less true, or somewhat true, false, nor very true and not very false, etc.; (2) imprecise truth tables; and (3) rules of inference whose validity is relative to a context rather than exact." (Lotfi A. Zadeh, "Fuzzy logic and approximate reasoning", 1975)

"[...] much of the information on which human decisions are based is possibilistic rather than probabilistic in nature, and the intrinsic fuzziness of natural languages - which is a logical consequence of the necessity to express information in a summarized form - is, in the main, possibilistic in origin." (Lotfi A Zadeh, "Fuzzy Sets as the Basis for a Theory of Possibility", Fuzzy Sets and Systems, 1978) 

"Philosophical objections may be raised by the logical implications of building a mathematical structure on the premise of fuzziness, since it seems (at least superficially) necessary to require that an object be or not be an element of a given set. From an aesthetic viewpoint, this may be the most satisfactory state of affairs, but to the extent that mathematical structures are used to model physical actualities, it is often an unrealistic requirement. [...] Fuzzy sets have an intuitively plausible philosophical basis. Once this is accepted, analytical and practical considerations concerning fuzzy sets are in most respects quite orthodox." (James Bezdek, 1981)

"Fuzziness, then, is a concomitant of complexity. This implies that as the complexity of a task, or of a system for performing that task, exceeds a certain threshold, the system must necessarily become fuzzy in nature. Thus, with the rapid increase in the complexity of the information processing tasks which the computers are called upon to perform, we are reaching a point where computers will have to be designed for processing of information in fuzzy form. In fact, it is the capability to manipulate fuzzy concepts that distinguishes human intelligence from the machine intelligence of current generation computers. Without such capability we cannot build machines that can summarize written text, translate well from one natural language to another, or perform many other tasks that humans can do with ease because of their ability to manipulate fuzzy concepts." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"It is important to observe that there is an intimate connection between fuzziness and complexity. Thus, a basic characteristic of the human brain, a characteristic shared in varying degrees with all information processing systems, is its limited capacity to handle classes of high cardinality, that is, classes having a large number of members. Consequently, when we are presented with a class of very high cardinality, we tend to group its elements together into subclasses in such a way as to reduce the complexity of the information processing task involved. When a point is reached where the cardinality of the class of subclasses exceeds the information handling capacity of the human brain, the boundaries of the subclasses are forced to become imprecise and fuzziness becomes a manifestation of this imprecision." (Lotfi A Zadeh, "The Birth and Evolution of Fuzzy Logic", 1989)

"A fuzzy set can be defined mathematically by assigning to each possible individual in the universe of discourse a value representing its grade of membership in the fuzzy set. This grade corresponds to the degree to which that individual is similar or compatible with the concept represented by the fuzzy set. Thus, individuals may belong in the fuzzy act to a greater or lesser degree as indicated by a larger or smaller membership grade. As already mentioned, these membership grades are very often represented by real-number values ranging in the closed interval between 0 and 1." (George J Klir & Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", 1995)


No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Data: Longitudinal Data

  "Longitudinal data sets are comprised of repeated observations of an outcome and a set of covariates for each of many subjects. One o...