"To the thought of considering the infinitely great not merely in the form of what grows without limits - and in the closely related form of the convergent infinite series first introduced in the seventeenth century-, but also fixing it mathematically by numbers in the determinate form of the completed-infinite, I have been logically compelled in the course of scientific exertions and attempts which have lasted many years, almost against my will, for it contradicts traditions which had become precious to me; and therefore I believe that no arguments can be made good against it which I would not know how to meet." (Georg Cantor, "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", 1883)
"Between mathematicians and astronomers some misunderstanding exists with respect to the meaning of the term 'convergence'. Mathematicians [...] stipulate that a series is convergent if the sum of the terms tends to a predetermined limit even if the first terms decrease very slowly. Conversely, astronomers are in the habit of saying that a series converges whenever the first twenty terms, for example, decrease rapidly even if the following terms might increase indefinitely. [...] Both rules are legitimate; the first for theoretical research and the second for numerical applications. Both must prevail, but in two entirely separate domains of which the boundaries must be accurately defined. Astronomers do not always know these boundaries accurately but rarely exceed them; the approximation with which they are satisfied usually keeps them far on this side of the boundary. In addition, their instinct guides them and, if they are wrong, a check on the actual observation promptly reveals their error [...]" (Henri Poincaré, "New Methods in Celestial Mechanics" ["Les méthodes nouvelles de la mécanique céleste"], 1892)
"Incidentally, naive intuition, which is in large part an inherited talent, emerges unconsciously from the in-depth study of this or that field of science. The word ‘Anschauung’ has not perhaps been suitably chosen. I would like to include here the motoric sensation with which an engineer assesses the distribution of forces in something he is designing, and even that vague feeling possessed by the experienced number cruncher about the convergence of infinite processes with which he is confronted. I am saying that, in its fields of application, mathematical intuition understood in this way rushes ahead of logical thinking and in each moment has a wider scope than the latter " (Felix Klein, "Über Arithmetisierung der Mathematik", Zeitschrift für mathematischen und naturwissen-schaftlichen Unterricht 27, 1896)
"The method of successive approximations is often applied to proving existence of solutions to various classes of functional equations; moreover, the proof of convergence of these approximations leans on the fact that the equation under study may be majorised by another equation of a simple kind. Similar proofs may be encountered in the theory of infinitely many simultaneous linear equations and in the theory of integral and differential equations. Consideration of semiordered spaces and operations between them enables us to easily develop a complete theory of such functional equations in abstract form." (Leonid V Kantorovich, "On one class of functional equations", 1936)
"Mathematics has, of course, given the solution of the difficulties in terms of the abstract concept of converging infinite series. In a certain metaphysical sense this notion of convergence does not answer Zeno’s argument, in that it does not tell how one is to picture an infinite number of magnitudes as together making up only a finite magnitude; that is, it does not give an intuitively clear and satisfying picture, in terms of sense experience, of the relation subsisting between the infinite series and the limit of this series." (Carl B Boyer, "The History of the Calculus and Its Conceptual Development", 1959)
"Central to the development of the calculus were the concepts of convergence and limit, and with these concepts at hand it became at last possible to resolve the ancient paradoxes of infinity which had so much intrigued Zeno." (Eli Maor, "To Infinity and Beyond: A Cultural History of the Infinite", 1987)
"If we know when a sequence approaches a point or, as we say, converges to a point, we can define a continuous mapping from one metric space to another by using the property that a converging sequence is mapped to the corresponding converging sequence." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)
"[...] the only characteristic property that continuous functions have is that near objects are sent to corresponding near objects, that is, a convergent sequence is mapped to the corresponding convergent sequence. It is reasonable to say that we cannot expect to extract from that property neither numerical consequences, nor a method to extensively study continuity. On the contrary, analytic functions can be represented by equations (precisely speaking, by infinite series). Compared to analytic functions, continuous functions, in general, are difficult to represent explicitly, although they exist as a concept." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)
"Intuitively speaking, a visual representation associated with the concept of continuity is the property that a near object is sent to a corresponding near object, that is, a convergent sequence is sent to a corresponding convergent sequence." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)
"Theoretically, the normal distribution is most famous because many distributions converge to it, if you sample from them enough times and average the results. This applies to the binomial distribution, Poisson distribution and pretty much any other distribution you’re likely to encounter (technically, any one for which the mean and standard deviation are finite)." (Field Cady, "The Data Science Handbook", 2017)
"At the basis of the distance concept lies, for example, the concept of convergent point sequence and their defined limits, and one can, by choosing these ideas as those fundamental to point set theory, eliminate the notions of distance." (Felix Hausdorff)
No comments:
Post a Comment