27 February 2022

On Convergence II (Systems)

"The system becomes more coherent as it is further extended. The elements which we require for explaining a new class of facts are already contained in our system. Different members of the theory run together, and we have thus a constant convergence to unity. In false theories, the contrary is the case." (William Whewell, "Philosophy of the Inductive Sciences", 1840)

"The power and beauty of stochastic approximation theory is that it provides simple, easy to implement gain sequences which guarantee convergence without depending (explicitly) on knowledge of the function to be minimized or the noise properties. Unfortunately, convergence is usually extremely slow. This is to be expected, as 'good performance' cannot be expected if no (or very little) knowledge of the nature of the problem is built into the algorithm. In other words, the strength of stochastic approximation (simplicity, little a priori knowledge) is also its weakness." (Fred C Scweppe, "Uncertain dynamic systems", 1973)

"When loops are present, the network is no longer singly connected and local propagation schemes will invariably run into trouble. [...] If we ignore the existence of loops and permit the nodes to continue communicating with each other as if the network were singly connected, messages may circulate indefinitely around the loops and process may not converges to a stable equilibrium. […] Such oscillations do not normally occur in probabilistic networks […] which tend to bring all messages to some stable equilibrium as time goes on. However, this asymptotic equilibrium is not coherent, in the sense that it does not represent the posterior probabilities of all nodes of the network." (Judea Pearl, "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference", 1988)

"Regarding stability, the state trajectories of a system tend to equilibrium. In the simplest case they converge to one point (or different points from different initial states), more commonly to one (or several, according to initial state) fixed point or limit cycle(s) or even torus(es) of characteristic equilibrial behaviour. All this is, in a rigorous sense, contingent upon describing a potential, as a special summation of the multitude of forces acting upon the state in question, and finding the fixed points, cycles, etc., to be minima of the potential function. It is often more convenient to use the equivalent jargon of 'attractors' so that the state of a system is 'attracted' to an equilibrial behaviour. In any case, once in equilibrial conditions, the system returns to its limit, equilibrial behaviour after small, arbitrary, and random perturbations." (Gordon Pask, "Different Kinds of Cybernetics", 1992)

"Systems, acting dynamically, produce (and incidentally, reproduce) their own boundaries, as structures which are complementary (necessarily so) to their motion and dynamics. They are liable, for all that, to instabilities chaos, as commonly interpreted of chaotic form, where nowadays, is remote from the random. Chaos is a peculiar situation in which the trajectories of a system, taken in the traditional sense, fail to converge as they approach their limit cycles or 'attractors' or 'equilibria'. Instead, they diverge, due to an increase, of indefinite magnitude, in amplification or gain." (Gordon Pask, "Different Kinds of Cybernetics", 1992)

"The description of the evolutionary trajectory of dynamical systems as irreversible, periodically chaotic, and strongly nonlinear fits certain features of the historical development of human societies. But the description of evolutionary processes, whether in nature or in history, has additional elements. These elements include such factors as the convergence of existing systems on progressively higher organizational levels, the increasingly efficient exploitation by systems of the sources of free energy in their environment, and the complexification of systems structure in states progressively further removed from thermodynamic equilibrium." (Ervin László et al, "The Evolution of Cognitive Maps: New Paradigms for the Twenty-first Century", 1993) 

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

A Picture's Worth

"The drawing shows me at a glance what would be spread over ten pages in a book." (Ivan Turgenev, 1862) [2] "Sometimes, half ...