14 October 2023

On Insight (1970-1979)

"Insight doesn't happen often in the click of the moment, like a lucky snapshot, but it comes in its own time and more slowly and from nowhere but within." (Eudora Welty, "One Time, One Place", 1971)

"Early scientific thinking was holistic, but speculative - the modern scientific temper reacted by being empirical, but atomistic. Neither is free from error, the former because it replaces factual inquiry with faith and insight, and the latter because it sacrifices coherence at the altar of facticity. We witness today another shift in ways of thinking: the shift toward rigorous but holistic theories. This means thinking in terms of facts and events in the context of wholes, forming integrated sets with their own properties and relationships." (Ervin László, "Introduction to Systems Philosophy", 1972)

"Mathematics is much more than a language for dealing with the physical world. It is a source of models and abstractions which will enable us to obtain amazing new insights into the way in which nature operates. Indeed, the beauty and elegance of the physical laws themselves are only apparent when expressed in the appropriate mathematical framework." (Melvin Schwartz, "Principles of Electrodynamics", 1972)

"Science cannot develop unless it is pursued for the sake of pure knowledge and insight. It will not survive unless it is used intensely and wisely for the betterment of humanity and not as an instrument of domination by one group over another." (Victor F Weisskopf, "Physics in the Twentieth Century: Selected Essays", 1972)

"Though we can say that mathematics is not art, some mathematicians think of themselves as artists of pure form. It seems clear, however, that their elegant and near aesthetic forms fail as art, because they are secondary visual ideas, the product of an intellectual set of restraints, rather than the cause of a felt insight realized in and through visual form." (Robert E Mueller, "Idols of Computer Art", 1972)

"[...] it is rather more difficult to recapture directness and simplicity than to advance in the direction of ever more sophistication and complexity. Any third-rate engineer or researcher can increase complexity; but it takes a certain flair of real insight to make things simple again." (Ernst F Schumacher, "Small Is Beautiful", 1973)

"The advantage of this way of proceeding is evident: insights and skills obtained on the model-side can be - certain transference criteria satisfied - transferred to the original, [in this way] the model-builder obtains a new knowledge about the modeled original […]" (Herbert Stachowiak, "Allgemeine Modelltheorie", 1973)

"All of us must cross the line between ignorance and insight many times before we truly understand." (David Hawkins, "The Informed Vision: Essays on Learning and Human Nature", 1974)

"The history of science is full of revolutionary advances that required small insights that anyone might have had, but that, in fact, only one person did." (Isaac Asimov, "The Three Numbers", Ellery Queen's Mystery Magazine, 1974)

"A metaphor is a word used in an unfamiliar context to give us a new insight; a good metaphor moves us to see our ordinary world in an extraordinary way." (Sallie McFague, "Speaking in Parables", 1975)

"To gauge the understanding and insight that metaphysics provides is to ask whether, in the final analysis, it helps us to cope with our world and harmonize our existence with nature, humanity, and ourselves, and leads to greater freedom and self-realization. Metaphysics is only the beginning. The end is human progress." (Rudolph Rummel, "Understanding Conflict and War: The dynamic psychological field", 1975)

"Mathematical induction […] is an entirely different procedure. Although it, too, leaps from the knowledge of particular cases to knowledge about an infinite sequence of cases, the leap is purely deductive. It is as certain as any proof in mathematics, and an indispensable tool in almost every branch of mathematics." (Martin Gardner, "Aha! Insight", 1978)

"The word ‘induction’ has two essentially different meanings. Scientific induction is a process by which scientists make observations of particular cases, such as noticing that some crows are black, then leap to the universal conclusion that all crows are black. The conclusion is never certain. There is always the possibility that at least one unobserved crow is not black." (Martin Gardner, "Aha! Insight", 1978)

"Every discovery, every enlargement of the understanding, begins as an imaginative preconception of what the truth might be. The imaginative preconception - a ‘hypothesis’ - arises by a process as easy or as difficult to understand as any other creative act of mind; it is a brainwave, an inspired guess, a product of a blaze of insight. It comes anyway from within and cannot be achieved by the exercise of any known calculus of discovery. " (Sir Peter B Medawar, "Advice to a Young Scientist", 1979)

"The truth is not in nature waiting to declare itself, and we cannot know a priori which observations are relevant and which are not; every discovery, every enlargement of the understanding begins as an imaginative preconception of what the truth might be. This imaginative preconception - a 'hypothesis' - arises by a process as easy or as difficult to understand as any other creative act of mind; it is a brainwave, an inspired guess, the product of a blaze of insight. It comes, anyway, from within and cannot be arrived at by the exercise of any known calculus of discovery." (Sir Peter B Medawar, "Advice to a Young Scientist", 1979)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Continuity: Definitions

"The Law of Continuity, as we here deal with it, consists in the idea that [...] any quantity, in passing from one magnitude to another...