23 October 2023

On Models: Statistical Models I

"The most widely used mathematical tools in the social sciences are statistical, and the prevalence of statistical methods has given rise to theories so abstract and so hugely complicated that they seem a discipline in themselves, divorced from the world outside learned journals. Statistical theories usually assume that the behavior of large numbers of people is a smooth, average 'summing-up' of behavior over a long period of time. It is difficult for them to take into account the sudden, critical points of important qualitative change. The statistical approach leads to models that emphasize the quantitative conditions needed for equilibrium - a balance of wages and prices, say, or of imports and exports. These models are ill suited to describe qualitative change and social discontinuity, and it is here that catastrophe theory may be especially helpful." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"When evaluating a model, at least two broad standards are relevant. One is whether the model is consistent with the data. The other is whether the model is consistent with the ‘real world.’" (Kenneth Bollen, "Structural Equations with Latent Variable", 1989)

"Statistical models are sometimes misunderstood in epidemiology. Statistical models for data are never true. The question whether a model is true is irrelevant. A more appropriate question is whether we obtain the correct scientific conclusion if we pretend that the process under study behaves according to a particular statistical model." (Scott Zeger, "Statistical reasoning in epidemiology", American Journal of Epidemiology, 1991)

"Statistical models for data are never true. The question whether a model is true is irrelevant. A more appropriate question is whether we obtain the correct scientific conclusion if we pretend that the process under study behaves according to a particular statistical model." (Scott Zeger, "Statistical reasoning in epidemiology", American Journal of Epidemiology, 1991)

"[…] it does not seem helpful just to say that all models are wrong. The very word model implies simplification and idealization. The idea that complex physical, biological or sociological systems can be exactly described by a few formulae is patently absurd. The construction of idealized representations that capture important stable aspects of such systems is, however, a vital part of general scientific analysis and statistical models, especially substantive ones, do not seem essentially different from other kinds of model." (Sir David Cox, "Comment on ‘Model uncertainty, data mining and statistical inference’", Journal of the Royal Statistical Society, Series A 158, 1995)

"Building statistical models is just like this. You take a real situation with real data, messy as this is, and build a model that works to explain the behavior of real data." (Martha Stocking, New York Times, 2000)

"The role of graphs in probabilistic and statistical modeling is threefold: (1) to provide convenient means of expressing substantive assumptions; (2) to facilitate economical representation of joint probability functions; and (3) to facilitate efficient inferences from observations." (Judea Pearl, "Causality: Models, Reasoning, and Inference", 2000)

"It is impossible to construct a model that provides an entirely accurate picture of network behavior. Statistical models are almost always based on idealized assumptions, such as independent and identically distributed (i.i.d.) interarrival times, and it is often difficult to capture features such as machine breakdowns, disconnected links, scheduled repairs, or uncertainty in processing rates." (Sean Meyn, "Control Techniques for Complex Networks", 2008)

"Statistical cognition is concerned with obtaining cognitive evidence about various statistical techniques and ways to present data. It’s certainly important to choose an appropriate statistical model, use the correct formulas, and carry out accurate calculations. It’s also important, however, to focus on understanding, and to consider statistics as communication between researchers and readers." (Geoff Cumming, "Understanding the New Statistics", 2012)

"In general, when building statistical models, we must not forget that the aim is to understand something about the real world. Or predict, choose an action, make a decision, summarize evidence, and so on, but always about the real world, not an abstract mathematical world: our models are not the reality - a point well made by George Box in his oft-cited remark that "all models are wrong, but some are useful". (David Hand, "Wonderful examples, but let's not close our eyes", Statistical Science 29, 2014)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...