29 October 2023

On Truth: Absolute Truth I

"The existence of infinite sets, at least with non-actual members, is something which I now regard as sufficiently proved and defended; as also, that the set of all absolute truths is an infinite set." (Bernard Bolzano, "Paradoxien des Unedlichen" ["Paradoxes of the Infinite"], 1851)

"The great truths with which it [mathematics] deals, are clothed with austere grandeur, far above all purposes of immediate convenience or profit. It is in them that our limited understandings approach nearest to the conception of that   absolute and infinite, towards which in most other things they aspire in vain. In the pure mathematics we contemplate absolute truths, which existed in the divine mind before the morning stars sang together, and which will continue to exist there, when the last of their radiant host shall have fallen from heaven." (Edward Everett, "Orations and Speeches" Vol. 8, 1870)

"Words are but symbols for the relations of things to one another and to us; nowhere do they touch upon absolute truth." (Friedrich Nietzsche, "Philosophy in the Tragic Age of the Greeks", 1873)

"In abstract mathematical theorems the approximation to absolute truth is perfect, because we can treat of infinitesimals. In physical science, on the contrary, we treat of the least quantities which are perceptible." (William S Jevons, "The Principles of Science: A Treatise on Logic and Scientific Method", 1874)

"It may be impossible for human intelligence to comprehend absolute truth, but it is possible to observe Nature with an unbiased mind and to bear truthful testimony of things seen." (Sir Richard A Gregory, "Discovery, Or, The Spirit and Service of Science", 1916)

"The axioms and provable theorems (i.e. the formulas that arise in this alternating game [namely formal deduction and the adjunction of new axioms]) are images of the thoughts that make up the usual procedure of traditional mathematics; but they are not themselves the truths in the absolute sense. Rather, the absolute truths are the insights (Einsichten) that my proof theory furnishes into the provability and the consistency of these formal systems." (David Hilbert; "Die logischen Grundlagen der Mathematik." Mathematische Annalen 88 (1), 1923)

 "Science makes no pretension to eternal truth or absolute truth; some of its rivals do." (Eric T Bell, "Mathematics: Queen and Servant of Science", 1951)

"The picture of scientific method drafted by modern philosophy is very different from traditional conceptions. Gone is the ideal of a universe whose course follows strict rules, a predetermined cosmos that unwinds itself like an unwinding clock. Gone is the ideal of the scientist who knows the absolute truth. The happenings of nature are like rolling dice rather than like revolving stars; they are controlled by probability laws, not by causality, and the scientist resembles a gambler more than a prophet. He can tell you only his best posits - he never knows beforehand whether they will come true. He is a better gambler, though, than the man at the green table, because his statistical methods are superior. And his goal is staked higher - the goal of foretelling the rolling dice of the cosmos. If he is asked why he follows his methods, with what title he makes his predictions, he cannot answer that he has an irrefutable knowledge of the future; he can only lay his best bets. But he can prove that they are best bets, that making them is the best he can do - and if a man does his best, what else can you ask of him?" (Hans Reichenbach, "The Rise of Scientific Philosophy", 1951)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Continuity: Definitions

"The Law of Continuity, as we here deal with it, consists in the idea that [...] any quantity, in passing from one magnitude to another...