16 October 2023

On Insight (1980-1989)

"The thinking person goes over the same ground many times. He looks at it from varying points of view - his own, his arch-enemy’s, others’. He diagrams it, verbalizes it, formulates equations, constructs visual images of the whole problem, or of troublesome parts, or of what is clearly known. But he does not keep a detailed record of all this mental work, indeed could not. […] Deep understanding of a domain of knowledge requires knowing it in various ways. This multiplicity of perspectives grows slowly through hard work and sets the state for the re-cognition we experience as a new insight." (Howard E Gruber, "Darwin on Man", 1981)

"Instead of insight, maybe all a man gets is strength to wander for a while. Maybe the only gift is a chance to inquire, to know nothing for certain. An inheritance of wonder and nothing more." (William Least Heat-Moon, "Blue Highways", 1982)

"The heart of mathematics consists of concrete examples and concrete problems. Big general theories are usually afterthoughts based on small but profound insights; the insights themselves come from concrete special cases." (Paul Halmos, "Selecta: Expository writing", 1983)

"All the efforts of the researcher to find other models, conceptions, different mathematical forms, better linguistic modes of expression, to do justice to newly discovered layers of being mean self-transformation. The researcher in his place is the human being in self-transformation to more profound insight into what is given." (John H. Dessauer, Universitas: A Quarterly German Review of the Arts and Sciences Vol. 26 (4), 1984)

"When one combines the new insights gained from studying far-from-equilibrium states and nonlinear processes, along with these complicated feedback systems, a whole new approach is opened that makes it possible to relate the so-called hard sciences to the softer sciences of life - and perhaps even to social processes as well. […] It is these panoramic vistas that are opened to us by Order Out of Chaos." (Ilya Prigogine, "Order Out of Chaos: Man's New Dialogue with Nature", 1984)

"Mathematics is good if it enriches the subject, if it opens up new vistas, if it solves old problems, if it fills gaps, fitting snugly and satisfyingly into what is already known, or if it forges new links between previously unconnected parts of the subject It is bad if it is trivial, overelaborate, or lacks any definable mathematical purpose or direction It is pure if its methods are pure - that is, if it doesn't cheat and tackle one problem while pretending to tackle another, and if there are no gaping holes in its logic It is applied if it leads to useful insights outside mathematics. By these criteria, today's mathematics contains as high a proportion of good work as at any other period, and as any other area, and much of it manages to be both pure and applied at the same time." (Ian Stewart, "The Problems of Mathematics", 1987)

"One of the features that distinguishes applied mathematics is its interest in framing important questions about the observed world in a mathematical way. This process of translation into a mathematical form can give a better handle for certain problems than would be otherwise possible. We call this the modeling process. It combines formal reasoning with intuitive insights. Understanding the models devised by others is a first step in learning some of the skills involved, and that is how we proceed in this text, which is an informal introduction to the mathematics of dynamical systems." (Edward Beltrami, "Mathematics for Dynamic Modeling", 1987)

"Although discrete mathematics and statistics provide necessary foundations for computer engineering and social sciences, calculus remains the archetype of higher mathematics. It is a powerful and elegant example of the mathematical method, leading both to major applications and to major theories. The language of calculus has spread to all scientific fields; the insight it conveys about the nature of change is something that no educated person can afford to be without." (Mathematical Sciences Education Board, "Everybody Counts: A Report to the Nation on the Future of Mathematics Education", 1989)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Continuity: Definitions

"The Law of Continuity, as we here deal with it, consists in the idea that [...] any quantity, in passing from one magnitude to another...