23 October 2023

On Models: Statistical Models II

"Statistical models in the social sciences rely on correlations, generally not causes, of our behavior. It is inevitable that such models of reality do not capture reality well. This explains the excess of false positives and false negatives." (Kaiser Fung, "Numbersense: How To Use Big Data To Your Advantage", 2013)

"Statistically speaking, the best predictive models are gems." (Kaiser Fung, "Numbersense: How To Use Big Data To Your Advantage", 2013)

"A statistical model is a relatively simple approximation to account for complex phenomena that generate data. A statistical model consists of one or more equations involving both random variables and parameters. The random variables have stated or assumed distributions. The parameters are unknown fixed quantities. The random components of statistical models account for the inherent variability in most observed phenomena." (Richard M Heiberger & Burt Holland, "Statistics Concepts", 2015)

"An oft-repeated rule of thumb in any sort of statistical model fitting is 'you can't fit a model with more parameters than data points'. This idea appears to be as wide-spread as it is incorrect. On the contrary, if you construct your models carefully, you can fit models with more parameters than datapoints [...]. A model with more parameters than datapoints is known as an under-determined system, and it's a common misperception that such a model cannot be solved in any circumstance. [...] this misconception, which I like to call the 'model complexity myth' [...] is not true in general, it is true in the specific case of simple linear models, which perhaps explains why the myth is so pervasive." (Jake Vanderplas, "The Model Complexity Myth", 2015) [source]

"Machine learning takes many different forms and goes by many different names: pattern recognition, statistical modeling, data mining, knowledge discovery, predictive analytics, data science, adaptive systems, self-organizing systems, and more. Each of these is used by different communities and has different associations. Some have a long half-life, some less so." (Pedro Domingos, "The Master Algorithm", 2015)

"In machine learning, knowledge is often in the form of statistical models, because most knowledge is statistical [...] Machine learning is a kind of knowledge pump: we can use it to extract a lot of knowledge from data, but first we have to prime the pump." (Pedro Domingos, "The Master Algorithm", 2015)

"One final warning about the use of statistical models (whether linear or otherwise): The estimated model describes the structure of the data that have been observed. It is unwise to extend this model very far beyond the observed data." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"The central limit conjecture states that most errors are the result of many small errors and, as such, have a normal distribution. The assumption of a normal distribution for error has many advantages and has often been made in applications of statistical models." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"When we use algebraic notation in statistical models, the problem becomes more complicated because we cannot 'observe' a probability and know its exact number. We can only estimate probabilities on the basis of observations." (David S Salsburg, "Errors, Blunders, and Lies: How to Tell the Difference", 2017)

"Any fool can fit a statistical model, given the data and some software. The real challenge is to decide whether it actually fits the data adequately. It might be the best that can be obtained, but still not good enough to use." (Robert Grant, "Data Visualization: Charts, Maps and Interactive Graphics", 2019)

"Statistical models have two main components. First, a mathematical formula that expresses a deterministic, predictable component, for example the fitted straight line that enables us to make a prediction [...]. But the deterministic part of a model is not going to be a perfect representation of the observed world [...] and the difference between what the model predicts, and what actually happens, is the second component of a model and is known as the residual error - although it is important to remember that in statistical modelling, ‘error’ does not refer to a mistake, but the inevitable inability of a model to exactly represent what we observe." (David Spiegelhalter, "The Art of Statistics: Learning from Data", 2019)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Continuity: Definitions

"The Law of Continuity, as we here deal with it, consists in the idea that [...] any quantity, in passing from one magnitude to another...