"Geometry is knowledge of the eternally existent." (Pythagoras of Samos, cca. 6th century BC)
"Indeed, many geometric things can be discovered or elucidated by algebraic principles, and yet it does not follow that algebra is geometrical, or even that it is based on geometric principles (as some would seem to think). This close affinity of arithmetic and geometry comes about, rather, because geometry is, as it were, subordinate to arithmetic, and applies universal principles of arithmetic to its special objects." (John Wallis, "Mathesis Universalis", 1657)
"Mathematicks therefore is a Science which teaches or contemplates whatever is capable of Measure or Number as such. When it relates to Number, it is called Arithmetick; but when to measure, as Length, Breadth, Depth, Degrees of Velocity in Motion, Intenseness or Remissness of Sounds, Augmentation or Diminution of Quality, etc. it is called Geometry." (Jacques Ozanam, "A Mathematical Dictionary: Or; A Compendious Explication of All Mathematical Terms", 1702)
"It hath been an old remark, that Geometry is an excellent Logic. And it must be owned that when the definitions are clear; when the postulata cannot be refused, nor the axioms denied; when from the distinct contemplation and comparison of figures, their properties are derived, by a perpetual well-connected chain of consequences, the objects being still kept in view, and the attention ever fixed upon them; there is acquired a habit of reasoning, close and exact and methodical; which habit strengthens and sharpens the mind, and being transferred to other subjects is of general use in the inquiry after truth." (George Berkeley, "The Analyst; Or, A Discourse Addressed to an Infidel Mathematician", 1734)
"Geometry is a true natural science: - only more simple, and therefore more perfect than any other. We must not suppose that, because it admits the application of mathematical analysis, it is therefore a purely logical science, independent of observation. Everybody studied by geometers presents some primitive phenomena which, not being discoverable by reasoning, must be due to observation alone." (Auguste Comte,"Course of Positive Philosophy", 1830)
"Geometry is that of mathematical science which is devoted to consideration of form and size, and may be said to be the best and surest guide to study of all sciences in which ideas of dimension or space are involved. Almost all the knowledge required by navigators, architects, surveyors, engineers, and opticians, in their respective occupations, is deduced from geometry and branches of mathematics. All works of art are constructed according to the rules which geometry involves; and we find the same laws observed in the works of nature. The study of mathematics, generally, is also of great importance in cultivating habits of exact reasoning; and in this respect it forms a useful auxiliary to logic." (William Chambers & Robert Chambers, "Chambers's Information for the People" Vol. 2, 1835)
"Arithmetic has for its object the properties of number in the abstract. In algebra, viewed as a science of operations, order is the predominating idea. The business of geometry is with the evolution of the properties of space, or of bodies viewed as existing in space." (James J Sylvester, "A Probationary Lecture on Geometry", 1844)
"Algebra is but written geometry and geometry is but figured algebra." (Sophie Germain, "Mémoire sur la surfaces élastiques", 1880)
"[…] geometry is the art of reasoning well from badly drawn figures; however, these figures, if they are not to deceive us, must satisfy certain conditions; the proportions may be grossly altered, but the relative positions of the different parts must not be upset." (Henri Poincaré, 1895)
"We see that experience plays an indispensable role in the genesis of geometry; but it would be an error thence to conclude that geometry is, even in part, an experimental science. If it were experimental it would be only approximative and provisional. And what rough approximation!" (Henri Poincaré, "Science and Hypothesis", 1901)
"And here is what makes this analysis situs interesting to us; it is that geometric intuition really intervenes there. When, in a theorem of metric geometry, one appeals to this intuition, it is because it is impossible to study the metric properties of a figure as abstractions of its qualitative properties, that is, of those which are the proper business of analysis situs. It has often been said that geometry is the art of reasoning correctly from badly drawn figures. This is not a capricious statement; it is a truth that merits reflection. But what is a badly drawn figure? It is what might be executed by the unskilled draftsman spoken of earlier; he alters the properties more or less grossly; his straight lines have disquieting zigzags; his circles show awkward bumps. But this does not matter; this will by no means bother the geometer; this will not prevent him from reasoning." (Henri Poincaré, "Dernières pensées", 1913)
"We must [...] maintain that mathematical geometry is not a science of space insofar as we understand by space a visual structure that can be filled with objects - it is a pure theory of manifolds." (Hans Reichenbach, "The Philosophy of Space and Time", 1928)
"With a literature much vaster than those of algebra and arithmetic combined, and as least as extensive as that of analysis, geometry is a richer treasure house of more interesting and half-forgotten things, which a hurried generation has no leisure to enjoy, than any other division of mathematics." (Eric T Bell, "The Development of Mathematics", 1945)
“Geometry is the study of shapes. Although true, this definition is so broad that it is almost meaningless. The judge of a beauty contest is, in a sense, a geometrician because he is judging […] shapes, but this is not quite what we want the word to mean. It has been said that a curved line is the most beautiful distance between two points. Even though this statement is about curves, a proper element of geometry, the assertion seems more to be in the domain of aesthetics rather than mathematics.” (Martin Gardner, "Aha! Insight", 1978)
"Geometry is the study of form and shape. Our first encounter with it usually involves such figures as triangles, squares, and circles, or solids such as the cube, the cylinder, and the sphere. These objects all have finite dimensions of length, area, and volume - as do most of the objects around us. At first thought, then, the notion of infinity seems quite removed from ordinary geometry. That this is not so can already be seen from the simplest of all geometric figures - the straight line. A line stretches to infinity in both directions, and we may think of it as a means to go 'far out' in a one-dimensional world." (Eli Maor, "To Infinity and Beyond: A Cultural History of the Infinite", 1987)
"It has been said that the art of geometry is to reason well from false diagrams." (Jean Dieudonné, "Mathematics - The Music of Reason", 1992)
"Since geometry is the mathematical idealization of space, a natural way to organize its study is by dimension. First we have points, objects of dimension O. Then come lines and curves, which are one-dimensional objects, followed by two-dimensional surfaces, and so on. A collection of such objects from a given dimension forms what mathematicians call a 'space'. And if there is some notion enabling us to say when two objects are 'nearby' in such a space, then it's called a topological space." (John L Casti, "Five Golden Rules", 1995)
"Traditional geometry is the study of the properties of spaces or objects that have integral dimensions. This can be generalized to allow effective fractional dimensions of objects, called fractals, that are embedded in an integral dimension space. […] Fractals are often defined as geometric objects whose spatial structure is self-similar. This means that by magnifying one part of the object, we find the same structure as of the original object. The object is characteristically formed out of a collection of elements: points, line segments, planar sections or volume elements. These elements exist in a space of the same or higher dimension to the elements themselves." (Yaneer Bar-Yamm, "Dynamics of Complexity", 1997)
"Practical geometry is an empirical undertaking, living and breathing and sweating in the real world where measurements are always approximate and things are fudged or smeared or jumbled up. Within Euclidean geometry points are concentrated, lines straightened, angles narrowed; idealizations are made, and some parts of experience discarded and other parts embraced. (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)
"In plain English, fractal geometry is the geometry of the irregular, the geometry of nature, and, in general, fractals are characterized by infinite detail, infinite length, and the absence of smoothness or derivative." (Philip Tetlow, "The Web’s Awake: An Introduction to the Field of Web Science and the Concept of Web Life", 2007)
"Geometry is perhaps the most elementary of the sciences that enable man, by purely intellectual processes, to make predictions (based on observation) about physical world. The power of geometry, in the sense of accuracy and utility of these deductions, is impressive, and has been a powerful motivation for the study of logic in geometry." (Harold S M Coxeter)
"Geometry is the science which restores the situation that existed before the creation of the world and tries to fill the 'gap', relinquishing the help of matter." (Lucian Blaga)
No comments:
Post a Comment