"[a set is] an embodiment of the idea or concept which we conceive when we regard the arrangement of its parts as a matter of indifference." (Bernard Bolzano, 1847)
"By a manifold or a set I understand in general every Many that can be thought of as One, i.e., every collection of determinate elements which can be bound up into a whole through a law, and with this I believe to define something that is akin to the Platonic εἷδος [form] or ἷδεα [idea]." (Georg Cantor, "Grundlagen einer allgemeinen Mannigfaltigkeitslehre", 1883)
"A set is formed by the grouping together of single objects into a whole. A set is a plurality thought of as a unit. If these or similar statements were set down as definitions, then it could be objected with good reason that they define idem per idemi or even obscurum per obscurius. However, we can consider them as expository, as references to a primitive concept, familiar to us all, whose resolution into more fundamental concepts would perhaps be neither competent nor necessary." (Felix Hausdorff, "Set Theory", 1962)
"Set theory is concerned with abstract objects and their relation to various collections which contain them. We do not define what a set is but accept it as a primitive notion. We gain an intuitive feeling for the meaning of sets and, consequently, an idea of their usage from merely listing some of the synonyms: class, collection, conglomeration, bunch, aggregate. Similarly, the notion of an object is primitive, with synonyms element and point. Finally, the relation between elements and sets, the idea of an element being in a set, is primitive." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)
"Unfortunately, we are not in a position to give a rigorous definition of the fundamental concept of the theory : the concept of set. Of course, we could say that a set is a collection, a union, an ensemble, a family, a system, a class, etc. But this would not be a mathematical definition, but rather a misuse of the multitude of words available in the English language." (Naum Ya. Vilenkin, "Stories about Sets", 1968)
"Set theory is unusual in that it deals with remarkably simple but apparently ineffable objects. A set is a collection, a class, an ensemble, a batch, a bunch, a lot, a troop, a tribe. To anyone incapable of grasping the concept of a set, these verbal digressions are apt to be of little help. […] A set may contain finitely many or infinitely many members. For that matter, a set such as {} may contain no members whatsoever, its parentheses vibrating around a mathematical black hole. To the empty set is reserved the symbol Ø, the figure now in use in daily life to signify access denied or don’t go, symbolic spillovers, I suppose, from its original suggestion of a canceled eye." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)
"Unlike the classic set theory where a set is represented as an indicator function to specify if an object belongs or not to it, a fuzzy set is an extension of a classic set where a subset is represented as a membership function to characterize the degree that an object belongs to it. The indicator function of a classic set takes value of 1 or 0, whereas the membership function of a fuzzy set takes value between 1 and 0." (Jianchao Han & Nick Cerone, Principles and Perspectives of Granular Computing, 2009)
"The invariance principle states that the result of counting a set does not depend on the order imposed on its elements during the counting process. Indeed, a mathematical set is just a collection without any implied ordering. A set is the collection of its elements - nothing more." (Alfred S Posamentier & Bernd Thaller, "Numbers: Their tales, types, and treasures", 2015)
"A set is a unity of which its elements are the constituents. It is a fundamental property of the mind to comprehend multitudes into unities. Sets are multitudes which are also unities. A multitude is the opposite of a unity. How can anything be both a multitude and a unity? Yet a set is just that. It is a seemingly contradictory fact that sets exist. It is surprising that the fact that multitudes are also unities leads to no contradictions: this is the main fact of mathematics. Thinking a plurality together seems like a triviality: and this appears to explain why we have no contradiction. But 'many things for one' is far from trivial." (Kurt Gödel)
"A set is a Many that allows itself to be thought of as a One." (Georg Cantor)
No comments:
Post a Comment