13 December 2017

Symmetry IX (Physics)

"Modern theoretical physics […] has put our thinking about the essence of matter in a different context. It has taken our gaze from the visible-the particles-to the underlying entity, the field. The presence of matter is merely a disturbance of the perfect state of the field at that place; something accidental, one could almost say, merely a ‘blemish’. Accordingly, there are no simple laws describing the forces between elementary particles […] Order and symmetry must be sought in the underlying field." (Walter Thirring "Urbausteine der Materie”, Almanach der bterreichischen Akademie der Wissenschaften vol. 118)

“As we explore physics at higher and higher energy, revealing its structure at shorter and shorter distances, we discover more and more symmetry.” (David J Gross, “The Role of Symmetry in Fundamental Physics”, 1996)

“As far as I can see, all a priori statements in physics have their origin in symmetry.” (Hermann Weyl, “Symmetry”, 1952)

“Symmetry does mean something different for physicists than for members of the public. It means that an object or a theory does not change when you make some transformation - either rotating or moving it or doing something to the equations.” (Lawrence M Krauss) [Link]

“Since the beginning of physics, symmetry considerations have provided us with an extremely powerful and useful tool in our effort to understand nature. Gradually they have become the backbone of our theoretical formulation of physical laws.” (Tsung-Dao Lee, “Particle Physics and Introduction to Field Theory”, 1981)

“Nothing in physics seems so hopeful to as the idea that it is possible for a theory to have a high degree of symmetry was hidden from us in everyday life. The physicist's task is to find this deeper symmetry.” (Steven Weinberg)

“There is no law of physics that does not lend itself to most economical derivation from a symmetry principle. However, a symmetry principle hides from view any sight of the deeper structure that underpins that law and therefore also prevents any immediate sight of how in each case that mutability comes about.” (John A Wheeler)

“Symmetry is bound up in many of the deepest patterns of Nature, and nowadays it is fundamental to our scientific understanding of the universe. Conservation principles, such as those for energy or momentum, express a symmetry that (we believe) is possessed by the entire space-time continuum: the laws of physics are the same everywhere.” (Ian Stewart & Martin Golubitsky, “Fearful Symmetry: Is God a Geometer?”, 1992)

“The concept of symmetry is used widely in physics. If the laws that determine relations between physical magnitudes and a change of these magnitudes in the course of time do not vary at the definite operations (transformations), they say, that these laws have symmetry (or they are invariant) with respect to the given transformations. For example, the law of gravitation is valid for any points of space, that is, this law is in variant with respect to the system of coordinates.” (Alexey Stakhov et al, “The Mathematics of Harmony”, 2009)

“Symmetry is a powerful physical principle that helps us not only simplify calculations and classify and unify diverse objects, it also restricts the possibilities in the absence of complete knowledge of the physical word.” (Quang Ho-Kim, et al “Invitation to Contemporary Physics”, 2004)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Søren Kierkegaard - Collected Quotes

"How close men, despite all their knowledge, usually live to madness? What is truth but to live for an idea? When all is said and done,...