"Round numbers are always false." (Samuel Johnson, [Letter to Thomas Boswell], 1778)
"[…] determine the probability of a future or unknown event not on the basis of the number of possible combinations resulting in this event or in its complementary event, but only on the basis of the knowledge of order of familiar previous events of this kind" (Nicolas de Condorcet, "Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix", 1785)
"It is otherwise in mathematical reasoning. Here the field has no limits. One proposition leads on to another, that to a third, and so on without end. If it should be asked, why demonstrative reasoning has so wide a field in mathematics, while, in other abstract subjects, it is confined within very narrow limits, I conceive this is chiefly owing to the nature of quantity, […] mathematical quantities being made up of parts without number, can touch in innumerable points, and be compared in innumerable different ways." (Thomas Reid, "Essays on the Intellectual Powers of Man", 1785)
"Statics is the science of the equilibrium of forces. In general, force or power is the cause, whatever it may be, which induces or tends to impart motion to the body to which it is applied. The force or power must be measured by the quantity of motion produced or to be produced. In the state of equilibrium, the force has no apparent action. It produces only a tendency for motion in the body it is applied to. But it must be measured by the effect it would produce if it were not impeded. By taking any force or its effect as unity, the relation of every other force is only a ratio, a mathematical quantity, which can be represented by some numbers or lines. It is in this fashion that forces must be treated in mechanics." (Joseph-Louis de Lagrange, "Mechanique Analytique", 1788)
"All that can be said upon the number and nature of elements is, in my opinion, confined to discussions entirely of a metaphysical nature. The subject only furnishes us with indefinite problems, which may be solved in a thousand different ways, not one of which, in all probability, is consistent with nature." (Antoine-Laurent Lavoisier,"Elements of Chemistry", 1790)
"It is probable that the number π is not even contained among the algebraical irrationalities, i.e., that it cannot be a root of an algebraical equation with a finite number of terms, whose coefficients are rational. But it seems to be very difficult to prove this strictly." (Adrien-Marie Legendre, "Elements de geometrie", 1794)
"An ancient writer said that arithmetic and geometry are the wings of mathematics; I believe one can say without speaking metaphorically that these two sciences are the foundation and essence of all the sciences which deal with quantity. Not only are they the foundation, they are also, as it were, the capstones; for, whenever a result has been arrived at, in order to use that result, it is necessary to translate it into numbers or into lines; to translate it into numbers requires the aid of arithmetic, to translate it into lines necessitates the use of geometry." (Joseph-Louis de Lagrange, "Leçons Élémentaires de Mathématiques", 1795)
"In general, nothing measurable can be measured except by fractions expressing the result of the measurement, unless the measure be contained an exact number of times in the thing to be measured." (Joseph-Louis de Lagrange, "Leçons Élémentaires de Mathématiques", 1795)
"Yet this is attempted by algebraists, who talk of a number less than nothing, of multiplying a negative number into a negative number and thus producing a positive number, of a number being imaginary. Hence they talk of two roots to every equation of the second order, and the learner is to try which will succeed in a given equation: they talk of solving an equation which requires two impossible roots to make it solvable: they can find out some impossible numbers, which, being multiplied together, produce unity. This is all jargon, at which common sense recoils; but, from its having been once adopted, like many other figments, it finds the most strenuous supporters among those who love to take things upon trust, and hate the labour of a serious thought." (William Frend, "The Principles of Algebra", 1796)
No comments:
Post a Comment