"Architecture is geometry made visible in the same sense that music is number made audible." (Claude F Bragdon, "The Beautiful Necessity: Seven Essays on Theosophy and Architecture", 1910)
"In the beginning of algebra, even the most intelligent child finds, as a rule, very great difficulty. The use of letters is a mystery, which seems to have no purpose except mystification. It is almost impossible, at first, not to think that every letter stands for some particular number, if only the teacher would reveal what number it stands for." (Bertrand Russell, "Mysticism and Logic: And Other Essays", 1910)
"Infinity is the land of mathematical hocus pocus. There Zero the magician is king. When Zero divides any number he changes it without regard to its magnitude into the infinitely small [great?], and inversely, when divided by any number he begets the infinitely great [small?]. In this domain the circumference of the circle becomes a straight line, and then the circle can be squared. Here all ranks are abolished, for Zero reduces everything to the same level one way or another. Happy is the kingdom where Zero rules!" (Paul Carus, "The Nature of Logical and Mathematical Thought"; Monist Vol 20, 1910)
"Perhaps the least inadequate description of the general scope of modern Pure Mathematics - I will not call it a definition - would be to say that it deals with form, in a very general sense of the term; this would include algebraic form, functional relationship, the relations of order in any ordered set of entities such as numbers, and the analysis of the peculiarities of form of groups of operations." (Ernst W Hobson, Nature Vol. 84, [address] 1910)
"At this point it may be useful to observe that a certain type of intellect is always worrying itself and others by discussion as to the applicability of technical terms. Are the incommensurable numbers properly called numbers? Are the positive and negative numbers really numbers? Are the imaginary numbers imaginary, and are they numbers?-are types of such futile questions. Now, it cannot be too clearly understood that, in science, technical terms are names arbitrarily assigned, like Christian names to children. There can be no question of the names being right or wrong. They may be judicious or injudicious; for they can sometimes be so arranged as to be easy to remember, or so as to suggest relevant and important ideas. But the essential principle involved was quite clearly enunciated in Wonderland to Alice by Humpty Dumpty, when he told her, apropos of his use of words, 'I pay them extra and make them mean what I like.' So we will not bother as to whether imaginary numbers are imaginary, or as to whether they are numbers, but will take the phrase as the arbitrary name of a certain mathematical idea, which we will now endeavour to make plain." (Alfred N Whitehead, "Introduction to Mathematics", 1911)
"The Perfect numbers are also like the virtues, few in number; whilst the other two classes are like the vices - numerous, inordinate and indefinite." (W Wynn Westcott,"Numbers: Their Occult Power and Mystic Virtues", 1911)
"Mathematics abstracts from all the particular properties of the elements hidden behind its schemata. This is achieved by mathematics with the help of indifferent symbols, like numbers or letters. Tektology must do likewise. Its generalizations should abstract from the concreteness of elements whose organizational relationships they express, and conceal this concreteness behind indifferent symbols." (Alexander Bogdanov, "Tektology: The Universal Organizational Science" Vol. I, 1913)
"The Perfect numbers are also like the virtues, few in number; whilst the other two classes are like the vices - numerous, inordinate and indefinite." (W Wynn Westcott, "Numbers: Their Occult Power and Mystic Virtues", 1911)
"The number was first studied in respect of its rationality or irrationality, and it was shown to be really irrational. When the discovery was made of the fundamental distinction between algebraic and transcendental numbers, i. e. between those numbers which can be, and those numbers which cannot be, roots of an algebraical equation with rational coefficients, the question arose to which of these categories the number π belongs. It was finally established by a method which involved the use of some of the most modern of analytical investigation that the number π was transcendental. When this result was combined with the results of a critical investigation of the possibilities of a Euclidean determination, the inferences could be made that the number π, being transcendental, does not admit of a construction either by a Euclidean determination, or even by a determination in which the use of other algebraic curves besides the straight line and the circle are permitted." (Ernest W Hobson, "Squaring the Circle", 1913)
"In particular, in introducing new numbers, mathematics is only obliged to give definitions of them, by which such a definiteness and, circumstances permitting, such a relation to the older numbers are conferred upon them that in given cases they can definitely be distinguished from one another. As soon as a number satisfies all these conditions, it can and must be regarded as existent and real in mathematics. Here I perceive the reason why one has to regard the rational, irrational, and complex numbers as being just as thoroughly existent as the finite positive integers." (Georg Cantor, "Contributions to the Founding of the Theory of Transfinite Numbers", 1915)
"The theory of Numbers has always been regarded as one of the most obviously useless branches of Pure Mathematics. The accusation is one against which there is no valid defence; and it is never more just than when directed against the parts of the theory which are more particularly concerned with primes. A science is said to be useful if its development tends to accentuate the existing inequalities in the distribution of wealth, or more directly promotes the destruction of human life. The theory of prime numbers satisfies no such criteria. Those who pursue it will, if they are wise, make no attempt to justify their interest in a subject so trivial and so remote, and will console themselves with the thought that the greatest mathematicians of all ages have found it in it a mysterious attraction impossible to resist." (Georg H Hardy, 1915)
"As soon as science has emerged from its initial stages, theoretical advances are no longer achieved merely by a process of arrangement. Guided by empirical data, the investigator rather develops a system of thought which, in general, is built up logically from a small number of fundamental assumptions, the so-called axioms. We call such a system of thought a theory. The theory finds the justification for its existence in the fact that it correlates a large number of single observations, and it is just here that the 'truth' of the theory lies." (Albert Einstein:"Relativity: The Special and General Theory", 1916)
"The way to enable a student to apprehend the instrumental value of arithmetic is not to lecture him on the benefit it will be to him in some remote and uncertain future, but to let him discover that success in something he is interested in doing depends on ability to use numbers." (John Dewey, "Democracy and Education: An Introduction to the Philosophy of Education", 1916)
"The theory of numbers is unrivalled for the number and variety of its results and for the beauty and wealth of its demonstrations. The Higher Arithmetic seems to include most of the romance of mathematics." (Louis J Mordell, 1917)
"Through and through the world is infected with quantity: To talk sense is to talk quantities. It is not use saying the nation is large - How large? It is no use saying the radium is scarce - How scarce? You cannot evade quantity. You may fly to poetry and music, and quantity and number will face you in your rhythms and your octaves." (Alfred N Whitehead, "The Aims of Education and Other Essays", 1917)
"Mathematics is a study which, when we start from its most familiar portions, may be pursued in either of two opposite directions. The more familiar direction is constructive, towards gradually increasing complexity: from integers to fractions, real numbers, complex numbers; from addition and multiplication to differentiation and integration, and on to higher mathematics. The other direction, which is less familiar, proceeds, by analyzing, to greater and greater abstractness and logical simplicity." (Bertrand Russell, "Introduction to Mathematical Philosophy", 1919)
No comments:
Post a Comment