26 June 2023

Geometrical Figures XVI: Spirals

"The individuation process, as the way of development and maturation of the psyche, does not follow a straight line, nor does it always lead onwards and upwards. The course it follows is rather 'stadial', consisting of progress and regress, flux and stagnation in alternating sequence. Only when we glance back over a long stretch of the way can we notice the development. If we wish to mark out the way somehow or other, it can equally well be considered a' spiral', the same problems and motifs occurring again and again on different levels." (C West Churchman, "Theory of Experimental Inference", 1948) 

"Mathematics is more than doing calculations, more than solving equations, more than proving theorems, more than doing algebra, geometry or calculus, more than a way of thinking. Mathematics is the design of a snowflake, the curve of a palm frond, the shape of a building, the joy of a game, the frustration of a puzzle, the crest of a wave, the spiral of a spider's web. It is ancient and yet new. Mathematics is linked to so many ideas and aspects of the universe." (Theoni Pappas, "More Joy of Mathematics: Exploring Mathematics All Around You", 1986)

"One reason nature pleases us is its endless use of a few simple principles: the cube-square law; fractals; spirals; the way that waves, wheels, trig functions, and harmonic oscillators are alike; the importance of ratios between small primes; bilateral symmetry; Fibonacci series, golden sections, quantization, strange attractors, path-dependency, all the things that show up in places where you don’t expect them [...] these rules work with and against each other ceaselessly at all levels, so that out of their intrinsic simplicity comes the rich complexity of the world around us. That tension - between the simple rules that describe the world and the complex world we see - is itself both simple in execution and immensely complex in effect. Thus exactly the levels, mixtures, and relations of complexity that seem to be hardwired into the pleasure centers of the human brain - or are they, perhaps, intrinsic to intelligence and perception, pleasant to anything that can see, think, create? - are the ones found in the world around us." (John Barnes, "Mother of Storms", 1994)

"[…] the symmetry group of the infinite logarithmic spiral is an infinite group, with one element for each real number . Two such transformations compose by adding the corresponding angles, so this group is isomorphic to the real numbers under addition." (Ian Stewart, "Symmetry: A Very Short Introduction", 2013)

"A limit cycle is an isolated closed trajectory. Isolated means that neighboring trajectories are not closed; they spiral either toward or away from the limit cycle. If all neighboring trajectories approach the limit cycle, we say the limit cycle is stable or attracting. Otherwise the limit cycle is unstable, or in exceptional cases, half-stable. Stable limit cycles are very important scientifically - they model systems that exhibit self-sustained oscillations. In other words, these systems oscillate even in the absence of external periodic forcing." (Steven H Strogatz, "Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering", 2015)

"Infinity is a Loch Ness Monster, capturing the imagination with its awe-inspiring size but elusive nature. Infinity is a dream, a vast fantasy world of endless time and space. Infinity is a dark forest with unexpected creatures, tangled thickets and sudden rays of light breaking through. Infinity is a loop that springs open to reveal an endless spiral." (Eugenia Cheng, "Beyond Infinity: An Expedition to the Outer Limits of Mathematics", 2017)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...