17 June 2023

Robert Messer - Collected Quotes

"A continuous function preserves closeness of points. A discontinuous function maps arbitrarily close points to points that are not close. The precise definition of continuity involves the relation of distance between pairs of points. […] continuity, a property of functions that allows stretching, shrinking, and folding, but preserves the closeness relation among points." (Robert Messer & Philip Straffin, "Topology Now!", 2006)

"Intuitively, two spaces that are homeomorphic have the same general shape in spite of possible deformations of distance and angle. Thus, if two spaces are not homeomorphic, they will tend to look distinctly different. Our job is to specify the difference. To do this rigorously, we need to define some property of topological spaces and show that the property is preserved under transformations by any homeomorphism. Then if one space has the property and the other one does not have the property, there is no way they can be homeomorphic." (Robert Messer & Philip Straffin, "Topology Now!", 2006)

"Numerical invariants and invariant properties enable us to distinguish certain topological spaces. We can go further and associate with a topological space a set having an algebraic structure. The fundamental group is the most basic of such possibilities. It not only provides a useful invariant for topological spaces, but the algebraic operation of multiplication defined for this group reflects the global structure of the space." (Robert Messer & Philip Straffin, "Topology Now!", 2006)

"Topology is the study of geometric objects as they are transformed by continuous deformations. To a topologist the general shape of the objects is of more importance than distance, size, or angle." (Robert Messer & Philip Straffin, "Topology Now!", 2006)

"The definition of homeomorphism was motivated by the idea of preserving the general shape or configuration of a geometric figure. Since path components are significant characteristics of a space, it is certainly reasonable that a homeomorphism will preserve the decomposition of a space into path components. […] Suppose we are given two geometric figures that we suspect are not topologically equivalent. If both of the figures are path-connected, counting components will not distinguish the spaces. However, we might be able to remove a special subset of one of the figures and count the number of components of the remainder. If no comparable set can be removed from the other space to leave the same number of components, we will then know that the two spaces are not homeomorphic." (Robert Messer & Philip Straffin, "Topology Now!", 2006)

"The classification theorems of mathematics are among the ultimate triumphs of human intellectual achievement. A classification theorem provides a complete list of all objects in a given category as well as a scheme for matching an unknown object from the category with exactly one of the canonical examples." (Robert Messer & Philip Straffin, "Topology Now!", 2006)

"The easiest way to show two figures are homeomorphic is often to construct an explicit homeomorphism between them. But what if two figures are not homeomorphic? Surely we cannot be expected to check every function between the sets and show that it is not a homeomorphism. One of the goals of the field of topology is to discover easier ways of detecting the differences between spaces that are not homeomorphic." (Robert Messer & Philip Straffin, "Topology Now!", 2006) 

"The Simplicial Approximation Theorem is a concise statement of the general result for functions between any two triangulated spaces. It says that on a suitable subdivision of the domain, any continuous function can be homotopically deformed by an arbitrarily small amount so that the modified function sends vertices to vertices and is linear on each edge, face, tetrahedron, and higher-dimensional cell of the triangulation." (Robert Messer & Philip Straffin, "Topology Now!", 2006)

"The triangle inequality is perhaps the most important property for proving theorems involving distance. The name is appropriate because the triangle inequality is an abstraction of the property that the sum of the lengths of two sides of a triangle must be at least as large as the length of the third side." (Robert Messer & Philip Straffin, "Topology Now!", 2006)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...