20 June 2023

On Invariance (2010 - )

"In dynamical systems, a bifurcation occurs when a small smooth change made to the parameter values (the bifurcation parameters) of a system causes a sudden 'qualitative' or topological change in its behaviour. Generally, at a bifurcation, the local stability properties of equilibria, periodic orbits or other invariant sets changes." (Gregory Faye, "An introduction to bifurcation theory", 2011)

"One of the most important skills you will need to acquire in order to use manifold theory effectively is an ability to switch back and forth easily between invariant descriptions and their coordinate counterparts." (John M Lee, "Introduction to Smooth Manifolds" 2nd Ed., 2013)

"The fact that manifolds do not come with any predetermined choice of coordinates is both a blessing and a curse. The flexibility to choose coordinates more or less arbitrarily can be a big advantage in approaching problems in manifold theory, because the coordinates can often be chosen to simplify some aspect of the problem at hand. But we pay for this flexibility by being obliged to ensure that any objects we wish to define globally on a manifold are not dependent on a particular choice of coordinates. There are generally two ways of doing this: either by writing down a coordinate-dependent definition and then proving that the definition gives the same results in any coordinate chart, or by writing down a definition that is manifestly coordinate-independent (often called an invariant definition)." (John M Lee, "Introduction to Smooth Manifolds" 2nd Ed., 2013)

"Intersections of lines, for example, remain intersections, and the hole in a torus (doughnut) cannot be transformed away. Thus a doughnut may be transformed topologically into a coffee cup (the hole turning into a handle) but never into a pancake. Topology, then, is really a mathematics of relationships, of unchangeable, or 'invariant', patterns." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"The invariance principle states that the result of counting a set does not depend on the order imposed on its elements during the counting process. Indeed, a mathematical set is just a collection without any implied ordering. A set is the collection of its elements - nothing more." (Alfred S Posamentier & Bernd Thaller, "Numbers: Their tales, types, and treasures", 2015)

"[…] the role that symmetry plays is not confined to material objects. Symmetries can also refer to theories and, in particular, to quantum theory. For if the laws of physics are to be invariant under changes of reference frames, the set of all such transformations will form a group. Which transformations and which groups depends on the systems under consideration." (William H Klink & Sujeev Wickramasekara, "Relativity, Symmetry and the Structure of Quantum Theory I: Galilean quantum theory", 2015)

"Data analysis and data mining are concerned with unsupervised pattern finding and structure determination in data sets. The data sets themselves are explicitly linked as a form of representation to an observational or otherwise empirical domain of interest. 'Structure' has long been understood as symmetry which can take many forms with respect to any transformation, including point, translational, rotational, and many others. Symmetries directly point to invariants, which pinpoint intrinsic properties of the data and of the background empirical domain of interest. As our data models change, so too do our perspectives on analysing data." (Fionn Murtagh, "Data Science Foundations: Geometry and Topology of Complex Hierarchic Systems and Big Data Analytics", 2018)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

A Picture's Worth

"The drawing shows me at a glance what would be spread over ten pages in a book." (Ivan Turgenev, 1862) [2] "Sometimes, half ...