20 June 2023

On Coordinates II

"Differentiability of a function can be established by examining the behavior of the function in the immediate neighborhood of a single point a in its domain. Thus, all we need is coordinates in the vicinity of the point a. From this point of view, one might say that local coordinates have more essential qualities. However, if are not looking at individual surfaces, we cannot find a more general and universal notion than smoothness." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"[...] if we consider a topological space instead of a plane, then the question of whether the coordinates axes in that space are curved or straight becomes meaningless. The way we choose coordinate systems is related to the way we observe the property of smoothness in a topological space." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"To consider differentiable functions, we must introduce a coordinate system on the plane and thereby to concentrate on the world of numbers.[...] a continuous function defined on a plane can be differentiable or nondifferentiable depending on the choice of coordinates. [...] the choice of coordinates on the plane determines which functions among the continuous functions should be selected as differentiable functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"To describe the property of smoothness, differentiable functions should be specified first. To do so, coordinates need to be introduced on the topological space. Those coordinates can be local coordinates such as the ones used by Gauss. Once coordinates are introduced around a point a in a topological space, differentiable functions near the point a are distinguished from the continuous functions in the region near a. If different coordinates are chosen, then a different set of differentiable functions is distinguished. In other words, the choice of local coordinates determines the notion of smoothness in a topological space." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Roughly speaking, a manifold is essentially a space that is locally similar to the Euclidean space. This resemblance permits differentiation to be defined. On a manifold, we do not distinguish between two different local coordinate systems. Thus, the concepts considered are just those independent of the coordinates chosen. This makes more sense if we consider the situation from the physics point of view. In this interpretation, the systems of coordinates are systems of reference." (Ovidiu Calin & Der-Chen Chang,  "Geometric Mechanics on Riemannian Manifolds : Applications to partial differential equations", 2005)

"When real numbers are used as coordinates, the number of coordinates is the dimension of the geometry. This is why we call the plane two-dimensional and space three-dimensional. However, one can also expect complex numbers to be useful, knowing their geometric properties […] What is remarkable is that complex numbers are if anything more appropriate for spherical and hyperbolic geometry than for Euclidean geometry. With hindsight, it is even possible to see hyperbolic geometry in properties of complex numbers that were studied as early as 1800, long before hyperbolic geometry was discussed by anyone." (John Stillwell, "Yearning for the Impossible: The Surprising Truths of Mathematics", 2006)

"The concept of symmetry is used widely in physics. If the laws that determine relations between physical magnitudes and a change of these magnitudes in the course of time do not vary at the definite operations (transformations), they say, that these laws have symmetry (or they are invariant) with respect to the given transformations. For example, the law of gravitation is valid for any points of space, that is, this law is in variant with respect to the system of coordinates." (Alexey Stakhov et al, "The Mathematics of Harmony", 2009)

"One of the most important skills you will need to acquire in order to use manifold theory effectively is an ability to switch back and forth easily between invariant descriptions and their coordinate counterparts." (John M Lee, "Introduction to Smooth Manifolds" 2nd Ed., 2013)

"The fact that manifolds do not come with any predetermined choice of coordinates is both a blessing and a curse. The flexibility to choose coordinates more or less arbitrarily can be a big advantage in approaching problems in manifold theory, because the coordinates can often be chosen to simplify some aspect of the problem at hand. But we pay for this flexibility by being obliged to ensure that any objects we wish to define globally on a manifold are not dependent on a particular choice of coordinates. There are generally two ways of doing this: either by writing down a coordinate-dependent definition and then proving that the definition gives the same results in any coordinate chart, or by writing down a definition that is manifestly coordinate-independent (often called an invariant definition)." (John M Lee, "Introduction to Smooth Manifolds" 2nd Ed., 2013)

"The primary aspects of the theory of complex manifolds are the geometric structure itself, its topological structure, coordinate systems, etc., and holomorphic functions and mappings and their properties. Algebraic geometry over the complex number field uses polynomial and rational functions of complex variables as the primary tools, but the underlying topological structures are similar to those that appear in complex manifold theory, and the nature of singularities in both the analytic and algebraic settings is also structurally very similar." (Raymond O Wells Jr, "Differential and Complex Geometry: Origins, Abstractions and Embeddings", 2017)

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Hypothesis Testing III

  "A little thought reveals a fact widely understood among statisticians: The null hypothesis, taken literally (and that’s the only way...