"Among the differences that will always be with you are the small overshoots and oscillations just before and after the vertical jumps in the square waves. This is called 'Gibbs ripple' and it will cause an overshoot of about 9% at the discontinuities of the square wave no matter how many terms of the series you add. But [...] adding more terms increases the frequency of the Gibbs ripple and reduces its horizontal extent in the vicinity of the jumps." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)
"An understanding of complex numbers can make the study of waves consid erably less mysterious, and you probably already have an idea that complex numbers have real and imaginary parts. Unfortunately, the term 'imaginary' often leads to confusion about the nature and usefulness of complex numbers." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)
"As the mechanical wave source moves through the medium, it pushes on a nearby segment of the material, and that segment moves away from the source and is compressed (that is, the same amount of mass is squeezed into a smaller volume, so the density of the segment increases). That segment of increased density exerts pressure on adjacent segments, and in this way a pulse (if the source gives a single push) or a harmonic wave (if the source oscillates back and forth) is generated by the source and propagates through the material." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)
"Before considering the wave equation for mechanical waves, you should understand the difference between the motion of individual particles and the motion of the wave itself. Although the medium is disturbed as a wave goes by, which means that the particles of the medium are displaced from their equilibrium positions, those particles don’t travel very far from their undisturbed positions. The particles oscillate about their equilibrium positions, but the wave does not carry the particles along – a wave is not like a steady breeze or an ocean current which transports material in bulk from one location to another. For mechanical waves, the net displacement of material produced by the wave over one cycle, or over one million cycles, is zero. So, if the particles aren’t being carried along with the wave, what actually moves at the speed of the wave? […] the answer is energy." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)
"But the presence of √−1 (the rotation operator between the two perpendicular numbe rlines in the complex plane) in the exponent causes the expression e^ix to move from the real to the imaginary number line. As it does so, its real and imaginary parts oscillate in a sinusoidal fashion […] So the real and imaginary parts of the expression e^ix oscillate in exactly the same way as the real and imaginary components of the rotating phasor […]" (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)
"So a very useful way to think about i (√−1) is as an operator that produces a 90◦ rotation of any vector to which it is applied. Thus the two perpendicular number lines form the basis of what we know today as the complex plane. Unfortunately, since multiplication by √−1 is needed to get from the horizontal to the vertical number line, the numbers along the vertical number line are called 'imaginary'. We say 'unfortunately' because these numbers are every bit as real as the numbers along the horizontal number line. But the terminology is pervasive, so when you first learned about complex numbers, you probably learned that they consist of a “real” and an 'imaginary' part." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)
"That’s where boundary conditions come in. A boundary condition 'ties down' a function or its derivative to a specified value at a specified location in space or time. By constraining the solution of a differential equation top satisfy the boundary condition(s), you may be able to determine the value of the function or its derivatives at other locations. We say “may” because boundary conditions that are not well-posed may provide insufficient or contradictory information." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)
"The 'disturbance' of such waves involves three things: the longitudinal displacement of material, changes in the density of the material, and variation of the pressure within the material. So pressure waves could also be called 'density waves' or even 'longitudinal displacement waves', and when you see graphs of the wave disturbance in physics and engineering textbooks, you should make sure you understand which of these quantities is being plotted as the 'displacement' of the wave." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)
"The easiest way to think about the shape of a wave is to imagine taking a snapshot of the wave at some instant of time. To keep the notation simple, you can call the time at which the snapshot is taken t = 0; snapshots taken later will be timed relative to this first one. At the time of that first snapshot […] can be written as y = f(x, 0) […] Many waves maintain the same shape over time – the wave moves in the direction of propagation, but all peaks and troughs move in unison, so the shape does not change as the wave moves." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)
"This equation is considered by some mathematicians and physicists to be the most important equation ever devised. In Euler’s relation, both sides of the equation are expressions for a complex number on the unit circle. The left side emphasizes the magnitude (the 1 multiplying e^iθ ) and direction in the complex plane (θ), while the right side emphasizes the real (cos θ) and imaginary (sin θ) components. Another approach to demonstrating the equivalence of the two sides of Euler’s relation is to write out the power-series representation of each side; [...]" (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)
"When you encounter the classical wave equation, it’s likely to be accompanied by some or all of the words 'linear, homogeneous, second-order partial differential equation'. You may also see the word 'hyperbolic' included in the list of adjectives. Each of these terms has a very specific mathematical meaning that’s an important property of the classical wave equation. But there are versions of the wave equation to which some of these words don’t apply, so it’s useful to spend some time understanding them." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)
"Why are boundary conditions important in wave theory? One reason is this: Differential equations, by their very nature, tell you about the change in a function (or, if the equation involves second derivatives, about the change in the change of the function). Knowing how a function changes is very useful, and may be all you need in certain problems. But in many problems you wish to know not only how the function changes, but also what value the function takes on at certain locations or times." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)
No comments:
Post a Comment