"In the world of the very small, where particle and wave aspects of reality are equally significant, things do not behave in any way that we can understand from our experience of the everyday world […] all pictures are false, and there is no physical analogy we can make to understand what goes on inside atoms. Atoms behave like atoms, nothing else." (John R Gribbin, "In Search Of Schrodinger's Cat: Updated Edition", 2012)
"Without precise predictability, control is impotent and almost meaningless. In other words, the lesser the predictability, the harder the entity or system is to control, and vice versa. If our universe actually operated on linear causality, with no surprises, uncertainty, or abrupt changes, all future events would be absolutely predictable in a sort of waveless orderliness." (Lawrence K Samuels, "Defense of Chaos: The Chaology of Politics, Economics and Human Action", 2013)
"As the mechanical wave source moves through the medium, it pushes on a nearby segment of the material, and that segment moves away from the source and is compressed (that is, the same amount of mass is squeezed into a smaller volume, so the density of the segment increases). That segment of increased density exerts pressure on adjacent segments, and in this way a pulse (if the source gives a single push) or a harmonic wave (if the source oscillates back and forth) is generated by the source and propagates through the material." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)
"Before considering the wave equation for mechanical waves, you should understand the difference between the motion of individual particles and the motion of the wave itself. Although the medium is disturbed as a wave goes by, which means that the particles of the medium are displaced from their equilibrium positions, those particles don’t travel very far from their undisturbed positions. The particles oscillate about their equilibrium positions, but the wave does not carry the particles along – a wave is not like a steady breeze or an ocean current which transports material in bulk from one location to another. For mechanical waves, the net displacement of material produced by the wave over one cycle, or over one million cycles, is zero. So, if the particles aren’t being carried along with the wave, what actually moves at the speed of the wave? […] the answer is energy." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)
"Ironically, conventional quantum mechanics itself involves a vast expansion of physical reality, which may be enough to avoid Einstein Insanity. The equations of quantum dynamics allow physicists to predict the future values of the wave function, given its present value. According to the Schrödinger equation, the wave function evolves in a completely predictable way. But in practice we never have access to the full wave function, either at present or in the future, so this 'predictability' is unattainable. If the wave function provides the ultimate description of reality - a controversial issue!" (Frank Wilczek, "Einstein’s Parable of Quantum Insanity", 2015)
"When you encounter the classical wave equation, it’s likely to be accompanied by some or all of the words 'linear, homogeneous, second-order partial differential equation'. You may also see the word 'hyperbolic' included in the list of adjectives. Each of these terms has a very specific mathematical meaning that’s an important property of the classical wave equation. But there are versions of the wave equation to which some of these words don’t apply, so it’s useful to spend some time understanding them." (Daniel Fleisch & Laura Kinnaman, "A Student’s Guide to Waves", 2015)
"Quantum theory can be thought of as the science of constructing wavefunctions and extracting predictions of measurable outcomes from them. […] The wavefunction is a little bit like a map - the best possible kind of map. It encodes all that can be said about a quantum system." (Hans C von Baeyer, "QBism: The future of quantum physics", 2016)
"Basis real and imaginary numbers have eternal and necessary reality. Complex numbers do not. They are temporal and contingent in the sense that for complex numbers to exist, we first have to carry out an operation: adding basis real and imaginary numbers together. Complex numbers therefore do not exist in their own right. They are constructed. They are derived. Symmetry breaking is exactly where constructed numbers come into existence. The very act of adding a sine wave to a cosine wave is the sufficient condition to create a broken symmetry: a complex number. The 'Big Bang', mathematically, is simply where a perfect array of basis sine and cosine waves start entering into linear combinations, creating a chain reaction, an 'explosion', of complex numbers - which corresponds to the “physical” universe." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)
"It is in fact mathematics itself that is simplest in hypothesis and also richest in phenomena (i.e. the simple source of all complexity). In ontological mathematics, all of existence comprises sinusoidal waves arranged into autonomous units called monads, and these are all that are required to explain everything." (Thomas Stark, "God Is Mathematics: The Proofs of the Eternal Existence of Mathematics", 2018)
"A neural-network algorithm is simply a statistical procedure for classifying inputs (such as numbers, words, pixels, or sound waves) so that these data can mapped into outputs. The process of training a neural-network model is advertised as machine learning, suggesting that neural networks function like the human mind, but neural networks estimate coefficients like other data-mining algorithms, by finding the values for which the model’s predictions are closest to the observed values, with no consideration of what is being modeled or whether the coefficients are sensible." (Gary Smith & Jay Cordes, "The 9 Pitfalls of Data Science", 2019)
"Because of the geometry of a circle, there’s always a quarter-cycle off set between any sine wave and the wave derived from it as its derivative, its rate of change. In this analogy, the point’s direction of travel is like its rate of change. It determines where the point will go next and hence how it changes its location. Moreover, this compass heading of the arrow itself rotates in a circular fashion at a constant speed as the point goes around the circle, so the compass heading of the arrow follows a sine-wave pattern in time. And since the compass heading is like the rate of change, voilà! The rate of change follows a sine-wave pattern too." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)
"What is essentially different in quantum mechanics is that it deals with complex quantities (e.g. wave functions and quantum state vectors) of a special kind, which cannot be split up into pure real and imaginary parts that can be treated independently. Furthermore, physical meaning is not attached directly to the complex quantities themselves, but to some other operation that produces real numbers (e.g. the square modulus of the wave function or of the inner product between state vectors)." (Ricardo Karam, "Why are complex numbers needed in quantum mechanics? Some answers for the introductory level", American Journal of Physics Vol. 88 (1), 2020)
No comments:
Post a Comment