"When significance tests are used and a null hypothesis is not rejected, a major problem often arises - namely, the result may be interpreted, without a logical basis, as providing evidence for the null hypothesis." (David F Parkhurst, "Statistical Significance Tests: Equivalence and Reverse Tests Should Reduce Misinterpretation", BioScience Vol. 51 (12), 2001)
"If you flip a coin three times and it lands on heads each time, it's probably chance. If you flip it a hundred times and it lands on heads each time, you can be pretty sure the coin has heads on both sides. That's the concept behind statistical significance - it's the odds that the correlation (or other finding) is real, that it isn't just random chance." (T Colin Campbell, "The China Study", 2004)
"Many statistics texts do not mention this and students often ask, ‘What if you get a probability of exactly 0.05?’ Here the result would be considered not significant, since significance has been defined as a probability of less than 0.05 (<0.05). Some texts define a significant result as one where the probability is less than or equal to 0.05 ( 0.05). In practice this will make very little difference, but since Fisher proposed the ‘less than 0.05’ definition, which is also used by most scientific publications, it will be used here." (Steve McKillup, "Statistics Explained: An Introductory Guide for Life Scientists", 2005)
"The dual meaning of the word significant brings into focus the distinction between drawing a mathematical inference and practical inference from statistical results." (Charles Livingston & Paul Voakes, "Working with Numbers and Statistics: A handbook for journalists", 2005)
"A type of error used in hypothesis testing that arises when incorrectly rejecting the null hypothesis, although it is actually true. Thus, based on the test statistic, the final conclusion rejects the Null hypothesis, but in truth it should be accepted. Type I error equates to the alpha (α) or significance level, whereby the generally accepted default is 5%." (Lynne Hambleton, "Treasure Chest of Six Sigma Growth Methods, Tools, and Best Practices", 2007)
"For the study of the topology of the interactions of a complex system it is of central importance to have proper random null models of networks, i.e., models of how a graph arises from a random process. Such models are needed for comparison with real world data. When analyzing the structure of real world networks, the null hypothesis shall always be that the link structure is due to chance alone. This null hypothesis may only be rejected if the link structure found differs significantly from an expectation value obtained from a random model. Any deviation from the random null model must be explained by non-random processes." (Jörg Reichardt, "Structure in Complex Networks", 2009)
No comments:
Post a Comment