31 August 2025

On Waves (1975-1999)

"Information is carried by physical entities, such as books or sound waves or brains, but it is not itself material. Information in a living system is a feature of the order and arrangement of its parts, which arrangement provides the signs that constitute a ‘code’ or ‘language’." (John Z Young, "Programs of the Brain", 1978)

"Every discovery, every enlargement of the understanding, begins as an imaginative preconception of what the truth might be. The imaginative preconception - a ‘hypothesis’ - arises by a process as easy or as difficult to understand as any other creative act of mind; it is a brainwave, an inspired guess, a product of a blaze of insight. It comes anyway from within and cannot be achieved by the exercise of any known calculus of discovery. " (Sir Peter B Medawar, "Advice to a Young Scientist", 1979)

"The truth is not in nature waiting to declare itself, and we cannot know a priori which observations are relevant and which are not; every discovery, every enlargement of the understanding begins as an imaginative preconception of what the truth might be. This imaginative preconception - a 'hypothesis' - arises by a process as easy or as difficult to understand as any other creative act of mind; it is a brainwave, an inspired guess, the product of a blaze of insight. It comes, anyway, from within and cannot be arrived at by the exercise of any known calculus of discovery." (Sir Peter B Medawar, "Advice to a Young Scientist", 1979)

"The 'complete description' that quantum theory claims the wave function to be is a description of physical reality (as in physics). No matter what we are feeling, or thinking about, or looking at, the wave function describes as completely as possible where and when we are doing it. [...] Since the wave function is thought to be a complete description of physical reality and since that which the wave function describes is idea-like as well as matter-like, then physical reality must be both idea-like and matter-like. In other words, the world cannot be as it appears. Incredible as it sounds, this is the conclusion of the orthodox view of quantum mechanics." (Gary Zukav, "The Dancing Wu Li Masters", 1979)

"So much of science consists of things we can never see: light ‘waves’ and charged ‘particles’; magnetic ‘fields’ and gravitational ‘forces’; quantum ‘jumps’ and electron ‘orbits’. In fact, none of these phenomena is literally what we say it is. Light waves do not undulate through empty space in the same way that water waves ripple over a still pond; a field is only a mathematical description of the strength and direction of a force; an atom does not literally jump from one quantum state to another, and electrons do not really travel around the atomic nucleus in orbits. The words we use are merely metaphors." (K C Cole, "On Imagining the Unseeable", Discover Magazine, 1982)

"At the most elemental level, reality evanesces into something called Schröedinger's Wave Function: a mathematical abstraction which is best represented as a pattern in an infinite-dimensional space, Hilbert Space. Each point of the Hilbert Space represents a possible state of affairs. The wave function for some one physical or mental system takes the form of, let us say, a coloring in of Hilbert Space. The brightly colored parts represent likely states for the system, the dim parts represent less probable states of affairs." (Rudy Rucker, "The Sex Sphere", 1983)

"Turning to the physical properties of the black holes, we can study them best by examining their reaction to external perturbations such as the incidence of waves of different sorts. Such studies reveal an analytic richness of the Kerr space-time which one could hardly have expected. This is not the occasion to elaborate on these technical matters. Let it suffice to say that contrary to every prior expectation, all the standard equations of mathematical physics can be solved exactly in the Kerr space-time. And the solutions predict a variety and range of physical phenomena which black holes must exhibit in their interaction with the world outside." (Subrahmanyan Chandrasekhar, "On Stars, Their Evolution, and Their Stability",[Nobel lecture] 1983)

"The world of science lives fairly comfortably with paradox. We know that light is a wave and also that light is a particle. The discoveries made in the infinitely small world of particle physics indicate randomness and chance, and I do not find it any more difficult to live with the paradox of a universe of randomness and chance and a universe of pattern and purpose than I do with light as a wave and light as a particle. Living with contradiction is nothing new to the human being." (Madeline L'Engle, "Two-Part Invention: The Story of a Marriage" , 1988)

"The view of science is that all processes ultimately run down, but entropy is maximized only in some far, far away future. The idea of entropy makes an assumption that the laws of the space-time continuum are infinitely and linearly extendable into the future. In the spiral time scheme of the timewave this assumption is not made. Rather, final time means passing out of one set of laws that are conditioning existence and into another radically different set of laws. The universe is seen as a series of compartmentalized eras or epochs whose laws are quite different from one another, with transitions from one epoch to another occurring with unexpected suddenness." (Terence McKenna, "True Hallucinations", 1989)

"Mathematics is more than doing calculations, more than solving equations, more than proving theorems, more than doing algebra, geometry or calculus, more than a way of thinking. Mathematics is the design of a snowflake, the curve of a palm frond, the shape of a building, the joy of a game, the frustration of a puzzle, the crest of a wave, the spiral of a spider's web. It is ancient and yet new. Mathematics is linked to so many ideas and aspects of the universe." (Theoni Pappas, "More Joy of Mathematics: Exploring mathematical insights & concepts", 1991)

"This remarkable state of affairs [overuse of significance testing] is analogous to engineers’ teaching (and believing) that light consists only of waves while ignoring its particle characteristics - and losing in the process, of course, any motivation to pursue the most interesting puzzles and paradoxes in the field." (Geoffrey R Loftus, "On the tyranny of hypothesis testing in the social sciences", Contemporary Psychology 36, 1991)

"Einstein was thus faced with the following apparent problem. Either give up the principle of relativity, which appears to make physics possible by saying that the laws of physics are independent of where you measure them, as long as you are in a state of uniform motion; or give up Maxwell’s beautiful theory of electromagnetism and electromagnetic waves. In a truly revolutionary move, he chose to give up neither. [...] It is a testimony to his boldness and creativity not that he chose to throw out existing laws that clearly worked, but rather that he found a creative way to live within their framework. So creative, in fact, that it sounds nuts." (Lawrence M Krauss, "Fear of Physics: A Guide for the Perplexed", 1993)

"Systems that vary deterministically as time progresses, such as mathematical models of the swinging pendulum, the rolling rock, and the breaking wave, and also systems that vary with an inconsequential amount of randomness - possibly a real pendulum, rock, or wave - are technically known as dynamical systems." (Edward N Lorenz, "The Essence of Chaos", 1993)

"One reason nature pleases us is its endless use of a few simple principles: the cube-square law; fractals; spirals; the way that waves, wheels, trig functions, and harmonic oscillators are alike; the importance of ratios between small primes; bilateral symmetry; Fibonacci series, golden sections, quantization, strange attractors, path-dependency, all the things that show up in places where you don’t expect them [...] these rules work with and against each other ceaselessly at all levels, so that out of their intrinsic simplicity comes the rich complexity of the world around us. That tension - between the simple rules that describe the world and the complex world we see - is itself both simple in execution and immensely complex in effect. Thus exactly the levels, mixtures, and relations of complexity that seem to be hardwired into the pleasure centers of the human brain - or are they, perhaps, intrinsic to intelligence and perception, pleasant to anything that can see, think, create? - are the ones found in the world around us." (John Barnes, "Mother of Storms", 1994)

"How beautifully simple is Wessel’s idea. Multiplying by √-1 is, geometrically, simply a rotation by 90 degrees in the counter clockwise sense [...] Because of this property √-1 is often said to be the rotation operator, in addition to being an imaginary number. As one historian of mathematics has observed, the elegance and sheer wonderful simplicity of this interpretation suggests 'that there is no occasion for anyone to muddle himself into a state of mystic wonderment over the grossly misnamed ‘imaginaries'. This is not to say, however, that this geometric interpretation wasn’t a huge leap forward in human understanding. Indeed, it is only the start of a tidal wave of elegant calculations." (Paul J Nahin, "An Imaginary Tale: The History of √-1", 1998)


No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

On Mathematical Reasoning

"The Reader may here observe the Force of Numbers, which can be successfully applied, even to those things, which one would imagine are...