31 October 2025

On Topology (1900-1949)

"That branch of mathematics which deals with the continuity properties of two- (and more) dimensional manifolds is called analysis situs or topology. […] Two manifolds must be regarded as equivalent in the topological sense if they can be mapped point for point in a reversibly neighborhood-true (topological) fashion on each other." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"The disadvantage of differential geometry, as compared with Euclidean or projective geometry and also topology, is that we are not in a position to found it on invariant basic concepts (fundamental relations) and axioms therefor. The situation is no different for conformal geometry on a Riemann surface." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"Two Riemann surfaces which can be mapped conformally onto each other are (conformally) equivalent and are to be regarded as different representations of one and the same ideal Riemann surface. The intrinsic properties of a Riemann surface will include only those properties which are invariant under conformal maps; that is, those properties which, if possessed by one Riemann surface are possessed by every equivalent surface. Obviously all topological properties are intrinsic properties of a Riemann surface; similarly with those properties belonging to the surface by virtue of its smoothness." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"Imagine any sort of model and a copy of it done by an awkward artist: the proportions are altered, lines drawn by a trembling hand are subject to excessive deviation and go off in unexpected directions. From the point of view of metric or even projective geometry these figures are not equivalent, but they appear as such from the point of view of geometry of position [that is, topology]." (Henri Poincaré, "Dernières pensées", 1920)

"The young mathematical disciple 'topology' might be of some help in making psychology a real science." (Kurt Lewin, Principles of topological psychology, 1936)

"In these days the angel of topology and the devil of abstract algebra fight for the soul of each individual mathematical domain." (HermannWeyl. "Invariants", Duke Math. J. 5, 1939)

"It is possible that analysis in the large may eventually reduce to topology, but not until topology has been greatly broadened. It is equally conceivable that the apparently less general situations which arise with such frequency in problems in analysis in the large may form the canonical cases about which the topology of the future can be built." (Marston Morse, "What is Analysis in the Large?", The American Mathematical Monthly Vol. 49 (6), 1942) 

"The first attempts to consider the behavior of so-called ‘random neural nets’ in a systematic way have led to a series of problems concerned with relations between the 'structure' and the ‘function’ of such nets. The ‘structure’ of a random net is not a clearly defined topological manifold such as could be used to describe a circuit with explicitly given connections. In a random neural net, one does not speak of "this" neuron synapsing on ‘that’ one, but rather in terms of tendencies and probabilities associated with points or regions in the net." (Anatol Rapoport. "Cycle distributions in random nets." The Bulletin of Mathematical Biophysics 10 (3), 1948)

"A definition is topological if it makes no use of mathematical elements other than those defined in terms of continuous deformations or transformations. Such deformations or transformations take the straightness out of planes and alter lengths and areas." (Marston Morse, "Equilibria in Nature: Stable and Unstable", Proceedings of the American Philosophical Society Vol. 93 (3), 1949) 

30 October 2025

On Topology (Unsourced)

"A child[’s …] first geometrical discoveries are topological…If you ask him to copy a square or a triangle, he draws a closed circle." (Jean Piaget)

"If you wear glasses, and you wake up in the morning and you’re not wearing your glasses, and everything is blurred together, that’s what the indiscrete topology is like." (Anonymous)

"In these days the angel of topology and the devil of abstract algebra fight for the soul of every individual discipline of mathematics." (Hermann Weyl)

"Point set topology is a disease from which the human race will soon recover." (Henri Poincaré)

“The geometry of Algebraic Topology is so pretty, it would seem a pity to slight it and miss all the intuition which it provides. At deeper levels, algebra becomes increasingly important, so for the sake of balance it seems only fair to emphasize geometry at the beginning.” (Allen Hatcher)

"The true traditional doughnut has the topology of a sphere. It is a matter of taste whether one regards this as having separate internal and external surfaces. The important point is that the inner space should be filled with good raspberry jam. This is also a matter of taste." (Peter B Fellgett)

“Topology is an elastic version of geometry that retains the idea of continuity but relaxes rigid metric notions of distance.” (Samuel Eilenberg)


"Topology is precisely that mathematical discipline which allows a passage from the local to the global." (René Thom)

"Topology is the science of fundamental pattern and structural relationships of event constellations." (R Buckminster Fuller)

"Topology is the property of something that doesn't change when you bend it or stretch it as long as you don't break anything." (Edward Witten)

On Topology (2000-2009)

"Arithmetic and number theory study patterns of number and counting. Geometry studies patterns of shape. Calculus allows us to handle patterns of motion. Logic studies patterns of reasoning. Probability theory deals with patterns of chance. Topology studies patterns of closeness and position." (Keith Devlin, "The Math Gene: How Mathematical Thinking Evolved And Why Numbers Are Like Gossip", 2000)

"An organizing frame provides a topology for the space it organizes; that is, it provides a set of organizing relations among the elements in space. When two spaces share the same organizing frame, they share the corresponding topology and so can easily be put into correspondence. Establishing a cross-space mapping between inputs becomes straightforward." (Gilles Fauconnier, "The Way We Think: Conceptual Blending and The Mind's Hidden Complexities", 2002)

"Networks are not en route from a random to an ordered state. Neither are they at the edge of randomness and chaos. Rather, the scale-free topology is evidence of organizing principles acting at each stage of the network formation process." (Albert-László Barabási, "Linked: How Everything Is Connected to Everything Else and What It Means for Business, Science, and Everyday Life", 2002

"Today, the whole subject of geometry extends way beyond the world of right-angled triangles, circles and so on. There are even branches of the subject in which the ideas of length, angle and area don’t really feature at all. One of these is topology – a sort of rubber-sheet geometry – where a recurring question is whether some geometric object can be deformed ‘smoothly’ into another one." (David Acheson, "1089 and All That: A Journey into Mathematics", 2002)

"[…] it is useful to note that there are three basic network topologies. First, there are line or chain networks with many nodes that are spread out in more or less linear fashion. Second, there are star or hub networks, where most important relationships move through a central hub or hubs. Third, there are all-channel networks, in which communications proceed in more or less all directions across the network simultaneously […]." (John Urry, "Global Complexity", 2003)

"[…] topology, the study of continuous shape, a kind of generalized geometry where rigidity is replaced by elasticity. It's as if everything is made of rubber. Shapes can be continuously deformed, bent, or twisted, but not cut - that's never allowed. A square is topologically equivalent to a circle, because you can round off the corners. On the other hand, a circle is different from a figure eight, because there's no way to get rid of the crossing point without resorting to scissors. In that sense, topology is ideal for sorting shapes into broad classes, based on their pure connectivity." (Steven Strogatz, "Sync: The Emerging Science of Spontaneous Order", 2003)

"If mathematics is a language, then taking a topology course at the undergraduate level is cramming vocabulary and memorizing irregular verbs: a necessary, but not always exciting exercise one has to go through before one can read great works of literature in the original language, whose beauty eventually - in retrospect - compensates for all the drudgery." (Volker Runde, "A Taste of Topology", 2005)

"Quantum physics, in particular particle and string theory, has proven to be a remarkable fruitful source of inspiration for new topological invariants of knots and manifolds. With hindsight this should perhaps not come as a complete surprise. Roughly one can say that quantum theory takes a geometric object (a manifold, a knot, a map) and associates to it a (complex) number, that represents the probability amplitude for a certain physical process represented by the object." (Robbert Dijkgraaf, "Mathematical Structures", 2005)

"When the graph is embedded within a surface it is called a map. The nature of the surface needed to embed the graph without cross-ing edges is a topological feature, and the topological structure of this payoff space is not only useful, but also beautiful." (David Robinson & David Goforth, "The Topology of the 2×2 Games: A New Periodic Table", 2005)

"Physics reduces Moonshine to a duality between two different pictures of quantum field theory: the Hamiltonian one, which concretely gives us from representation theory the graded vector spaces, and another, due to Feynman, which manifestly gives us modularity. In particular, physics tells us that this modularity is a topological effect, and the group SL2(Z) directly arises in its familiar role as the modular group of the torus." (Terry Gannon, "Moonshine Beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics", 2006)

"Topology is the study of geometric objects as they are transformed by continuous deformations. To a topologist the general shape of the objects is of more importance than distance, size, or angle." (Robert Messer & Philip Straffin, "Topology Now!", 2006)

"Enabling insight into large and complex datasets is a prevalent theme in current visualization research for which different approaches are pursued. Topology-based methods are built on the idea of abstracting characteristic structures such as the topological skeleton from the data and to construct the visualization accordingly." (Helwig Hauser et al [Eds.], "Topology-based Methods in Visualization", 2007)

"Networks may also be important in terms of view. Many models assume that agents are bunched together on the head of a pin, whereas the reality is that most agents exist within a topology of connections to other agents, and such connections may have an important influence on behavior. […] Models that ignore networks, that is, that assume all activity takes place on the head of a pin, can easily suppress some of the most interesting aspects of the world around us. In a pinhead world, there is no segregation, and majority rule leads to complete conformity - outcomes that, while easy to derive, are of little use." (John H Miller & Scott E Page, "Complex Adaptive Systems", 2007)

"Topology allows the possibility of making qualitative predictions when quantitative ones are impossible." (Timothy Gowers, "The Princeton Companion to Mathematics", 2008)

"Topology makes it possible to explain the general structure of the set of solutions without even knowing their analytic expression." (Michael I. Monastyrsky, "Riemann, Topology, and Physics" 2nd Ed., 2008)

"For the study of the topology of the interactions of a complex system it is of central importance to have proper random null models of networks, i.e., models of how a graph arises from a random process. Such models are needed for comparison with real world data. When analyzing the structure of real world networks, the null hypothesis shall always be that the link structure is due to chance alone. This null hypothesis may only be rejected if the link structure found differs significantly from an expectation value obtained from a random model. Any deviation from the random null model must be explained by non-random processes." (Jörg Reichardt, "Structure in Complex Networks", 2009)

"Practically every complex system can be imagined as a network. Atoms form a network making macromolecules. Proteins form a network making cells. Cells form a network making organs and bodies. We form a network making our societies, and so on. Most of these networks are a result of self-organization. In fact, self-organization seems to be an inherent property of matter in our Universe. The resulting networks have a lot of common features, from their topology to their dynamism." (Péter Csermely, "Weak Links: The Universal Key to the Stabilityof Networks and Complex Systems", 2009)

"Scale-free topologies enable more sensitive responses to various changes than those allowed by random networks (Bar-Yam and Epstein, 2004). This can be a very important property for explaining why scale-free networks have been selected and maintained in many systems." (Péter Csermely, "Weak Links: The Universal Key to the Stabilityof Networks and Complex Systems", 2009)

"The idea of Morse theory is that the topology/geometry of a manifold can be understood by examining the smooth functions (and their singularities) on that manifold." (Steven G Krantz, "The Proof is in the Pudding", 2007)

"The most fundamental tool in the subject of point-set topology is the homeomorphism. This is the device by means of which we measure the equivalence of topological spaces." (Steven G Krantz, "Essentials of Topology with Applications”, 2009)

"Topology is a child of twentieth century mathematical thinking. It allows us to consider the shape and structure of an object without being wedded to its size or to the distances between its component parts. Knot theory, homotopy theory, homology theory, and shape theory are all part of basic topology. It is often quipped that a topologist does not know the difference between his coffee cup and his donut - because each has the same abstract 'shape' without looking at all alike." (Steven G Krantz, "Essentials of Topology with Applications”, 2009)

"Topology is geometry without distance or angle. The geometrical objects of study, not rigid but rather made of rubber or elastic, are especially stretchy." (Stephen Huggett & David Jordan, “A Topological Aperitif”, 2009)


On Topology (2010-)

"A crucial difference between topology and geometry lies in the set of allowable transformations. In topology, the set of allowable transformations is much larger and conceptually much richer than is the set of Euclidean transformations. All Euclidean transformations are topological transformations, but most topological transformations are not Euclidean. Similarly, the sets of transformations that define other geometries are also topological transformations, but many topological transformations have no counterpart in these geometries. It is in this sense that topology is a generalization of geometry." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)

"A topological property is, therefore, any property that is preserved under the set of all homeomorphisms. […] Homeomorphisms generally fail to preserve distances between points, and they may even fail to preserve shapes." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)

"Although topology grew out of geometry - at least in the sense that it was initially concerned with sets of geometric points - it quickly evolved to include the study of sets for which no geometric representation is possible. This does not mean that topological results do not apply to geometric objects. They do. Instead, it means that topological results apply to a very wide class of mathematical objects, only some of which have a geometric interpretation." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)

"In each branch of mathematics it is essential to recognize when two structures are equivalent. For example two sets are equivalent, as far as set theory is concerned, if there exists a bijective function which maps one set onto the other. Two groups are equivalent, known as isomorphic, if there exists a a homomorphism of one to the other which is one-to-one and onto. Two topological spaces are equivalent, known as homeomorphic, if there exists a homeomorphism of one onto the other." (Sydney A Morris, "Topology without Tears", 2011)

"[…] topologies are determined by the way the neighborhoods are defined. Neighborhoods, not individual points, are what matter. They determine the topological structure of the parent set. In fact, in topology, the word point conveys very little information at all." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)

"What distinguishes topological transformations from geometric ones is that topological transformations are more 'primitive'. They retain only the most basic properties of the sets of points on which they act." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)

"Intersections of lines, for example, remain intersections, and the hole in a torus (doughnut) cannot be transformed away. Thus a doughnut may be transformed topologically into a coffee cup (the hole turning into a handle) but never into a pancake. Topology, then, is really a mathematics of relationships, of unchangeable, or 'invariant', patterns." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"Topology is a geometry in which all lengths, angles, and areas can be distorted at will. Thus a triangle can be continuously transformed into a rectangle, the rectangle into a square, the square into a circle, and so on. Similarly, a cube can be transformed into a cylinder, the cylinder into a cone, the cone into a sphere. Because of these continuous transformations, topology is known popularly as 'rubber sheet geometry'. All figures that can be transformed into each other by continuous bending, stretching, and twisting are called 'topologically equivalent'." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"[…] topology is concerned precisely with those properties of geometric figures that do not change when the figures are transformed. Intersections of lines, for example, remain intersections, and the hole in a torus (doughnut) cannot be transformed away. Thus a doughnut may be transformed topologically into a coffee cup (the hole turning into a handle) but never into a pancake. Topology, then, is really a mathematics of relationships, of unchangeable, or 'invariant', patterns." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)

"Mathematics is a technique, a tool, albeit a sophisticated one. Theory is something different. Theory lies in the discovery, understanding, and explaining of phenomena present in the world. Mathematics facilitates this - enormously - but then so does computation. Naturally, there is a difference. Working with equations allows us to follow an argument step by step and reveals conditions a solution must adhere to, whereas computation does not. But computation - and this more than compensates - allows us to see phenomena that equilibrium mathematics does not. It allows us to rerun results under different conditions, exploring when structures appear and don’t appear, isolating underlying mechanisms, and simplifying again and again to extract the bones of a phenomenon. Computation in other words is an aid to thought, and it joins earlier aids in economics - algebra, calculus, statistics, topology, stochastic processes - each of which was resisted in its time. The computer is an exploratory lab for economics, and used skillfully, a powerful generator for theory." (W Brian Arthur, "Complexity and the Economy", 2015)

"The primary aspects of the theory of complex manifolds are the geometric structure itself, its topological structure, coordinate systems, etc., and holomorphic functions and mappings and their properties. Algebraic geometry over the complex number field uses polynomial and rational functions of complex variables as the primary tools, but the underlying topological structures are similar to those that appear in complex manifold theory, and the nature of singularities in both the analytic and algebraic settings is also structurally very similar." (Raymond O Wells Jr, "Differential and Complex Geometry: Origins, Abstractions and Embeddings", 2017)

"At first, topology can seem like an unusually imprecise branch of mathematics. It’s the study of squishy play-dough shapes capable of bending, stretching and compressing without limit. But topologists do have some restrictions: They cannot create or destroy holes within shapes. […] While this might seem like a far cry from the rigors of algebra, a powerful idea called homology helps mathematicians connect these two worlds. […] homology infers an object’s holes from its boundaries, a more precise mathematical concept. To study the holes in an object, mathematicians only need information about its boundaries." (Kelsey Houston-Edwards, "How Mathematicians Use Homology to Make Sense of Topology", Quanta Magazine, 2021) 

"In geometry, shapes like circles and polyhedra are rigid objects; the tools of the trade are lengths, angles and areas. But in topology, shapes are flexible things, as if made from rubber. A topologist is free to stretch and twist a shape. Even cutting and gluing are allowed, as long as the cut is precisely reglued. A sphere and a cube are distinct geometric objects, but to a topologist, they’re indistinguishable." (David E Richeson, "Topology 101: The Hole Truth", 2021) 

On Topology (1950-1974)

"In topology we are concerned with geometrical facts that do not even involve the concepts of a straight line or plane but only the continuous connectiveness between points of a figure." (David Hilbert, "Geometry and Imagination", 1952)

"Speaking roughly, a homology theory assigns groups to topological spaces and homomorphisms to continuous maps of one space into another. To each array of spaces and maps is assigned an array of groups and homomorphisms. In this way, a homology theory is an algebraic image of topology. The domain of a homology theory is the topologist’s field of study. Its range is the field of study of the algebraist. Topological problems are converted into algebraic problems." (Samuel Eilenberg & Norman E Steenrod, "Foundations of Algebraic Topology", 1952)

"A logic machine is a device, electrical or mechanical, designed specifically for solving problems in formal logic. A logic diagram is a geometrical method for doing the same thing. […] A logic diagram is a two-dimensional geometric figure with spatial relations that are isomorphic with the structure of a logical statement. These spatial relations are usually of a topological character, which is not surprising in view of the fact that logic relations are the primitive relations underlying all deductive reasoning and topological properties are, in a sense, the most fundamental properties of spatial structures. Logic diagrams stand in the same relation to logical algebras as the graphs of curves stand in relation to their algebraic formulas; they are simply other ways of symbolizing the same basic structure." (Martin Gardner, "Logic Machines and Diagrams", 1958)

"In every subject one looks for the topological and algebraic structures involved, since these structures form a unifying core for the most varied branches of mathematics." (Karl-Heinrich Weise & R Noack, "Einführung in die Topologie: Grundzüge der Mathematik", ["Introduction in Topology: Aspects of Topology"] 1960)

"The stable manifolds of the critical points of a nice function can be thought of as the cells of a complex while the unstable manifolds are the dual cells. This structure has the advantage over previous structures that both the cells and the duals are differentiably imbedded in M. We believe that nice functions will replace much of the use of С triangulations and combinatorial methods in differential topology." (Steven Smale, "The generalized Poincare conjecture in higher dimensions", Bull. Amer. Math. Soc. 66, 1960)

"Certainly, the problems of combinatorial manifolds and the relationships between combinatorial and differentiable manifolds are legitimate problems in their own right. An example is the questionof existence and uniqueness of differentiable structures on a combinatorial manifold. However, we don't believe such problems are the goal of differential topology itself. This view seems justified by the fact that today one can substantially develop differential topology most simply without any reference to the combinatorial manifolds." (Steven Smale, "A survey of some recent developments in differential topology", 1961)

"It has turned out that the main theorems in differential topology did not depend on developments in combinatorial topology. In fact, the contrary is the case; the main theorems in differential topology inspired corresponding ones in combinatorial topology, or else have no combinatorial counterpart as yet (but there are also combinatorial theorem whose differentiable analogues are false)."  (Steven Smale, "A survey of some recent developments in differential topology", 1961)

"[...] it is clear that differential geometry, analysis and physics prompted the early development of differential topology (it is this that explains our admitted bias toward differential topology, that it lies close to the main stream of  mathematics). On the other hand, the combinatorial approach to manifolds was started because it was believed that these means would afford a useful attack on the differentiable case." (Steven Smale, "A survey of some recent developments in differential topology", 1961)

"We consider differential topology to be the study of differentiable manifolds and differentiable maps. Then, naturally, manifolds are considered equivalent if they are diffeomorphic, i.e., there exists a differentiable map from one to the other with a differentiable inverse." (Steven Smale, "A survey of some recent developments in differential topology", 1961)

"In all candor, we must admit that the intuitive meaning of compactness for topological spaces is somewhat elusive. This concept, however, is so vitally important throughout topology […]" (George F Simmons, "Introduction to Topology and Modern Analysis", 1963) 

"Topology provides the synergetic means of ascertaining the values of any system of experiences. Topology is the science of fundamental pattern and structural relationships of event constellations." (R Buckminster Fuller, "Operating Manual for Spaceship Earth", 1963)

"Rational mechanics is mathematics, just as geometry is mathematics. […] Mechanics cannot, any more than geometry, exhaust the properties of the physical universe. […] Mechanics presumes geometry and hence is more special; since it attributes to a sphere additional properties beyond its purely geometric ones, the mechanics of spheres is not only more complicated and detailed but also, on the grounds of pure logic, necessarily less widely applicable than geometry. This, again, is no reproach; geometry is not despised because it is less widely applicable than topology. A more complicated theory, such as mechanics, is less likely to apply to any given case; when it does apply, it predicts more than any broader, less specific theory." (Clifford Truesdell, "Six Lectures on Modern Natural Philosophy", 1966)

"In every subject one looks for the topological and algebraic structures involved, since these structures form a unifying core for the most varied branches of mathematics." (K Weise and H Noack, "Aspects of Topology" 2nd Ed. , 1967)

"A manifold can be given by specifying the coordinate ranges of an atlas, the images in those coordinate ranges of the overlapping parts of the coordinate domains, and the coordinate transformations for each of those overlapping domains. When a manifold is specified in this way, a rather tricky condition on the specifications is needed to give the Hausdorff property, but otherwise the topology can be defined completely by simply requiring the coordinate maps to be homeomorphisms." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"An initial study of tensor analysis can. almost ignore the topological aspects since the topological assumptions are either very natural (continuity, the Hausdorff property) or highly technical (separability, paracompactness). However, a deeper analysis of many of the existence problems encountered in tensor analysis requires assumption of some of the more difficult-to-use topological properties, such as compactness and paracompactness."  (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"General or point set topology can be thought of as the abstract study of the ideas of nearness and continuity. This is done in the first place by picking out in elementary geometry those properties of nearness that seem to be fundamental and taking them as axioms." (Andrew H Wallace, "Differential Topology: First Steps", 1968)

"From its beginning critical point theory has been concerned with mutual relations between topology and geometric analysis, including differential geometry. Although it may have seemed to many to have been directed in its initial years toward applications of topology to analysis, one now sees that the road from topology to geometric analysis is a two-way street. Today the methods of critical point theory enter into the foundations of almost all studies of analysis or geometry 'in the large'." (Marston Morse & Stewart S Cairns, "Critical Point Theory in Global Analysis and Differential Topology: An Introduction", 1969)

"In mathematics, logic, linguistics, and other abstract disciplines, the systems are not assigned to objects. They are defined by an enumeration of the variables, their admissible values, and their algebraic, topological, grammatical, and other properties which, in the given case, determine the relations between the variables under consideration." (George Klir, "An approach to general systems theory", 1969)

"Mathematicians are finding that the study of global analysis or differential topology requires a knowledge not only of the separate techniques of analysis, differential geometry, topology, and algebra, but also a deeper understanding of how these fields can join forces." (Marston Morse & Stewart S Cairns, "Critical Point Theory in Global Analysis and Differential Topology: An Introduction", 1969)

"To abstract the qualitative features of a differential equation on M, the concept of a phase portrait become important. Usually the phase portrait means the picture of the solution curves of the differential equation. [...] Then two differential equations on M have the same phase portrait if they are topologically equivalent. A definition of phase portrait is thus a topological  equivalence class of differential equations on M. A main goal of the qualitative study of ordinary differential equations is to obtain information on the phase portrait of differential equations." (Steven Smale, "What is global analysis?", American Mathematical Monthly Vol. 76 (1), 1969)

"Topology provides the synergetic means of ascertaining the values of any system of experiences. Topology is the science of fundamental pattern and structural relationships of event constellations." (R Buckminster Fuller, "Operating Manual for Spaceship Earth", 1969)

“In geometry, topology is the study of properties of shapes that are independent of size or shape and are not changed by stretching, bending, knotting, or twisting.” (M C Escher, 1971)

"Topology is not ‘designed to guide us’ in structure. It is this structure." (Jacques Lacan, "L’Étourdit", 1972)

"[…] topology, a science that studies the properties of geometric figures that do not change under continuous transformations." (Yakov Khurgin, "Did You Say Mathematics?", 1974)

On Topology (1975-1999)

"The philosophical emphasis here is: to solve a geometrical problem of a global nature, one first reduces it to a homotopy theory problem; this is in turn reduced to an algebraic problem and is solved as such. This path has historically been the most fruitful one in algebraic topology." (Brayton Gray, "Homotopy Theory", Pure and Applied Mathematics Vol 64, 1975)

"According to the special theory there is a finite limit to the speed of causal chains, whereas classical causality allowed arbitrarily fast signals. Foundational studies […] soon revealed that this departure from classical causality in the special theory is intimately related to its most dramatic consequences: the relativity of simultaneity, time dilation, and length contraction. By now it had become clear that these kinematical effects are best seen as consequences of Minkowski space-time, which in turn incorporates a nonclassical theory of causal structure. However, it has not widely been recognized that the converse of this proposition is also true: the causal structure of Minkowski space-time contains within itself the entire geometry (topological and metrical structure) of Minkowski space-time." (John A. Winnie," The Causal Theory of Space-Time", 1977)

"Because of its foundation in topology, catastrophe theory is qualitative, not quantitative. Just as geometry treated the properties of a triangle without regard to its size, so topology deals with properties that have no magnitude, for example, the property of a given point being inside or outside a closed curve or surface. This property is what topologists call 'invariant' -it does not change even when the curve is distorted. A topologist may work with seven-dimensional space, but he does not and cannot measure (in the ordinary sense) along any of those dimensions. The ability to classify and manipulate all types of form is achieved only by giving up concepts such as size, distance, and rate. So while catastrophe theory is well suited to describe and even to predict the shape of processes, its descriptions and predictions are not quantitative like those of theories built upon calculus. Instead, they are rather like maps without a scale: they tell us that there are mountains to the left, a river to the right, and a cliff somewhere ahead, but not how far away each is, or how large." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

“Every branch of geometry can be defined as the study of properties that are unaltered when a specified figure is given specified symmetry transformations. Euclidian plane geometry, for instance, concerns the study of properties that are 'invariant' when a figure is moved about on the plane, rotated, mirror reflected, or uniformly expanded and contracted. Affine geometry studies properties that are invariant when a figure is 'stretched' in a certain way. Projective geometry studies properties invariant under projection. Topology deals with properties that remain unchanged even when a figure is radically distorted in a manner similar to the deformation of a figure made of rubber.” (Martin Gardner, "Aha! Insight", 1978)

"For one thing, they say, the classification of the elementary catastrophes depends on what is called 'local' analysis of topological properties-in other words, analysis that describes only the immediate neighborhood of the singularity. But the classification theorem does not prove that a system's total range, its 'global' behavior, is like its behavior in that neighborhood. […] Since the topological approach provides no scale, it requires an act of faith to identify a mathematical jump on the catastrophe surface with an observed discontinuity in nature." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"Yet wherever the cracks appear, they show a tendency to extend towards each other, to form characteristic networks, to form specific types of junctions. The location, the magnitude, and the timing of the cracks (their quantitative aspects) are beyond calculation, but their patterns of growth and the topology of their joining (the qualitative aspects) recur again and again." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"A surface is a topological space in which each point has a neighbourhood homeomorphic to the plane, ad for which any two distinct points possess disjoint neighbourhoods. […] The requirement that each point of the space should have a neighbourhood which is homeomorphic to the plane fits exactly our intuitive idea of what a surface should be. If we stand in it at some point (imagining a giant version of the surface in question) and look at the points very close to our feet we should be able to imagine that we are standing on a plane. The surface of the earth is a good example. Unless you belong to the Flat Earth Society you believe it to,be (topologically) a sphere, yet locally it looks distinctly planar. Think more carefully about this requirement: we ask that some neighbourhood of each point of our space be homeomorphic to the plane. We have then to treat this neighbourhood as a topological space in its own right. But this presents no difficulty; the neighbourhood is after all a subset of the given space and we can therefore supply it with the subspace topology." (Mark A Armstrong, "Basic Topology", 1979)

"[…] in trying to prove a concrete geometrical result such as the classification theorem for surfaces, the purely topological structure of the surface (that it be locally euclidean) does not give us much leverage from which to start. On the other hand, although we can define algebraic invariants, such as the fundamental group, for topological spaces in general, they are not a great deal of use to us unless we can calculate them for a reasonably large collection of spaces. Both of these problems may be dealt with effectively by working with spaces that can be broken up into pieces which we can recognize, and which fit together nicely, the so called triangulable spaces." (Mark A Armstrong, "Basic Topology", 1979)

"Topology has to do with those properties of a space which are left unchanged by the kind of transformation that we have called a topological equivalence or homeomorphism. But what sort of spaces interest us and what exactly do we mean by a 'space? The idea of a homeomorphism involves very strongly the notion of continuity [...]"  (Mark A Armstrong, "Basic Topology", 1979)

"Perhaps the best way to approach the question of what mathematics is, is to start at the beginning. In the far distant prehistoric past, where we must look for the beginnings of mathematics, there were already four major faces of mathematics. First, there was the ability to carry on the long chains of close reasoning that to this day characterize much of mathematics. Second, there was geometry, leading through the concept of continuity to topology and beyond. Third, there was number, leading to arithmetic, algebra, and beyond. Finally there was artistic taste, which plays so large a role in modern mathematics. There are, of course, many different kinds of beauty in mathematics. In number theory it seems to be mainly the beauty of the almost infinite detail; in abstract algebra the beauty is mainly in the generality. Various areas of mathematics thus have various standards of aesthetics." (Richard Hamming, "The Unreasonable Effectiveness of Mathematics", The American Mathematical Monthly Vol. 87 (2), 1980)

"Topology, which used to be called geometry of situation or analysis situs ('topos' means position, situation in Greek), considers that all pots with two handles are of the same form because, if both are infinitely flexible and compressible, they can be molded into any other continuously, without tearing any new opening or closing up any old one. It also teaches that all single island coastlines are of the same form, because they are topologically identical to a circle." (Benoît B Mandelbrot, "The Fractal Geometry of Nature" 3rd Ed., 1983)

"Linking topology and dynamical systems is the possibility of using a shape to help visualize the whole range of behaviors of a system. For a simple system, the shape might be some kind of curved surface; for a complicated system, a manifold of many dimensions. A single point on such a surface represents the state of a system at an instant frozen in time. As a system progresses through time, the point moves, tracing an orbit across this surface. Bending the shape a little corresponds to changing the system's parameters, making a fluid more visous or driving a pendulum a little harder. Shapes that look roughly the same give roughly the same kinds of behavior. If you can visualize the shape, you can understand the system." (James Gleick, "Chaos: Making a New Science", 1987)

"Fractal geometry is concerned with the description, classification, analysis, and observation of subsets of metric spaces (X, d). The metric spaces are usually, but not always, of an inherently 'simple' geometrical character; the subsets are typically geometrically 'complicated'. There are a number of general properties of subsets of metric spaces, which occur over and over again, which are very basic, and which form part of the vocabulary for describing fractal sets and other subsets of metric spaces. Some of these properties, such as openness and closedness, which we are going to introduce, are of a topological character. That is to say, they are invariant under homeomorphism." (Michael Barnsley, "Fractals Everwhere", 1988)

"People who have a casual interest in mathematics may get the idea that a topologist is a mathematical playboy who spends his time making Möbius bands and other diverting topological models. If they were to open any recent textbook in topology, they would be surprised. They would find page after page of symbols, seldom relieved by a picture or diagram." (Martin Gardner, "Hexaflexagons and Other Mathematical Diversions", 1988)

"Instead of a state of nature evolving according to a mathematical fomula, the evolution is given geometrically. The full advantage of the geometrical point of view is beginning to appear. The more traditional way of dealing with dynamics was with the use of algebraic expressions. But a description given by formulae would be cumbersome. That form of description wouldn't have led me to insights or to perceptive analysis. My background as a topologist, trained to bend objects like squares, helped to make it possible to see the horseshoe." (Steven Smale, "What is chaos?", 1990)

"And you should not think that the mathematical game is arbitrary and gratuitous. The diverse mathematical theories have many relations with each other: the objects of one theory may find an interpretation in another theory, and this will lead to new and fruitful viewpoints. Mathematics has deep unity. More than a collection of separate theories such as set theory, topology, and algebra, each with its own basic assumptions, mathematics is a unified whole." (David Ruelle, "Chance and Chaos", 1991)

"Mathematics has deep unity. More than a collection of separate theories such as set theory, topology, and algebra, each with its own basic assumptions, mathematics is a unified whole. Mathematics is a great kingdom, and that kingdom belongs to those who see." (David Ruelle, "Chance and Chaos", 1991)

"The major strength of catastrophe theory is to provide a qualitative topology of the general structure of discontinuities. Its major weakness is that it frequently is not associated with specific models allowing precise quantitative prediction, although such are possible in principle." (J Barkley Rosser Jr., "From Catastrophe to Chaos: A General Theory of Economic Discontinuities", 1991)

"Topology is that branch of mathematics which is interested in the forms of things aside from their size and shape. Two things are said to be topologically equivalent if one can be deformed smoothly into the other without sticking, cutting, or puncturing it in any way. Thus an egg is equivalent to a sphere." (John D Barrow, "Theories of Everything: The Quest for Ultimate Explanation", 1991)

"Topology deals with those properties of curves, surfaces, and more general aggregates of points that are not changed by continuous stretching, squeezing, or bending. To a topologist, a circle and a square are the same, because either one can easily be bent into the shape of the other. In three dimensions, a circle and a closed curve with an overhand knot in it are topologically different, because no amount of bending, squeezing, or stretching will remove the knot." (Edward N Lorenz, "The Essence of Chaos", 1993)

"Geometry and topology most often deal with geometrical figures, objects realized as a set of points in a Euclidean space (maybe of many dimensions). It is useful to view these objects not as rigid (solid) bodies, but as figures that admit continuous deformation preserving some qualitative properties of the object. Recall that the mapping of one object onto another is called continuous if it can be determined by means of continuous functions in a Cartesian coordinate system in space. The mapping of one figure onto another is called homeomorphism if it is continuous and one-to-one, i.e. establishes a one-to-one correspondence between points of both figures." (Anatolij Fomenko, "Visual Geometry and Topology", 1994)

"Homeomorphism is one of the basic concepts in topology. Homeomorphism, along with the whole topology, is in a sense the basis of spatial perception. When we look at an object, we see, say, a telephone receiver or a ring-shaped roll and first of all pay attention to the geometrical shape (although we do not concentrate on it specially) - an oblong figure thickened at the ends or a round rim with a large hole in the middle. Even if we deliberately concentrate on the shape of the object and forget about its practical application, we do not yet 'see' the essence of the shape. The point is that oblongness, roundness, etc. are metric properties of the object. The topology of the form lies 'beyond them'." (Anatolij Fomenko, "Visual Geometry and Topology", 1994)

"The concept of homeomorphism appears to be convenient for establishing those important properties of figures which remain unchanged under such deformations. These properties are sometimes referred to as topological, as distinguished from metrical, which are customarily associated with distances between points, angles between lines, edges of a figure, etc." (Anatolij Fomenko, "Visual Geometry and Topology", 1994)

"No other theory known to science [other than superstring theory] uses such powerful mathematics at such a fundamental level. […] because any unified field theory first must absorb the Riemannian geometry of Einstein’s theory and the Lie groups coming from quantum field theory. […] The new mathematics, which is responsible for the merger of these two theories, is topology, and it is responsible for accomplishing the seemingly impossible task of abolishing the infinities of a quantum theory of gravity." (Michio Kaku, "Hyperspace", 1995)

"Since geometry is the mathematical idealization of space, a natural way to organize its study is by dimension. First we have points, objects of dimension O. Then come lines and curves, which are one-dimensional objects, followed by two-dimensional surfaces, and so on. A collection of such objects from a given dimension forms what mathematicians call a 'space'. And if there is some notion enabling us to say when two objects are 'nearby' in such a space, then it's called a topological space." (John L Casti, "Five Golden Rules", 1995)

"The only organization capable of unprejudiced growth, or unguided learning, is a network. All other topologies limit what can happen." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"There are a variety of swarm topologies, but the only organization that holds a genuine plurality of shapes is the grand mesh. In fact, a plurality of truly divergent components can only remain coherent in a network. No other arrangement-chain, pyramid, tree, circle, hub-can contain true diversity working as a whole. This is why the network is nearly synonymous with democracy or the market." (Kevin Kelly, "Out of Control: The New Biology of Machines, Social Systems and the Economic World", 1995)

"[...] there is no area of mathematics where thinking abstractly has paid more handsome dividends than in topology, the study of those properties of geometrical objects that remain unchanged when we deform or distort them in a continuous fashion without tearing, cutting, or breaking them." (John L Casti, "Five Golden Rules", 1995)

"[...] if we consider a topological space instead of a plane, then the question of whether the coordinates axes in that space are curved or straight becomes meaningless. The way we choose coordinate systems is related to the way we observe the property of smoothness in a topological space." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"To describe the property of smoothness, differentiable functions should be specified first. To do so, coordinates need to be introduced on the topological space. Those coordinates can be local coordinates such as the ones used by Gauss. Once coordinates are introduced around a point a in a topological space, differentiable functions near the point a are distinguished from the continuous functions in the region near a. If different coordinates are chosen, then a different set of differentiable functions is distinguished. In other words, the choice of local coordinates determines the notion of smoothness in a topological space." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996)

"Topologists are interested not only in finite-dimensional spaces (for example, subspaces of Rn), but also in infinite-dimensional ones, such as the spaces occurring in quantum field theory." (Albert S Schwarz, "Topology for Physicists", 1996) 

"Algebraic topology studies properties of a narrower class of spaces, - basically the classical objects of mathematics: spaces given by systems of algebraic and functional equations, surfaces lying in Euclidean space, and other sets which in mathematics are called manifolds. Examining the narrower class of spaces permits deeper penetration into their structure. (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"One of the basic tasks of topology is to learn to distinguish nonhomeomorphic figures. To this end one introduces the class of invariant quantities that do not change under homeomorphic transformations of a given figure. The study of the invariance of topological spaces is connected with the solution of a whole series of complex questions: Can one describe a class of invariants of a given manifold? Is there a set of integral invariants that fully characterizes the topological type of a manifold? and so forth." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

"Topology studies those characteristics of figures which are preserved under a certain class of continuous transformations. Imagine two figures, a square and a circular disk, made of rubber. Deformations can convert the square into the disk, but without tearing the figure it is impossible to convert the disk by any deformation into an annulus. In topology, this intuitively obvious distinction is formalized." (Michael I Monastyrsky, "Riemann, Topology, and Physics", 1999)

On Topology (-1899)

"After all the progress I have made in these matters, I am still not happy with Algebra, because it provides neither the shortest ways nor the most beautiful constructions of Geometry. This is why when it comes to that, I think that we need another analysis which is properly geometric or linear, which expresses to us directly situm, in the same way as algebra expresses magnitudinem. And I think that I have the tools for that, and that we might represent figures and even engines and motion in character, in the same way as algebra represents numbers in magnitude." (Gottfried W Leibniz, [letter to Christiaan Huygens] 1679)

"I found the elements of a new characteristic, completely different from Algebra and which will have great advantages for the exact and natural mental representation, although without figures, of everything that depends on the imagination. Algebra is nothing but the characteristic of undetermined numbers or magnitudes. But it does not directly express the place, angles and motions, from which it follows that it is often difficult to reduce, in a computation, what is in a figure, and that it is even more difficult to find geometrical proofs and constructions which are enough practical even when the Algebraic calculus is all done." (Gottfried W Leibniz, [letter to Christiaan Huygens] 1679)

"In addition to that branch of geometry which is concerned with magnitudes, and which has always received the greatest attention, there is another branch, previously almost unknown, which Leibniz first mentioned, calling it the geometry of position. This branch is concerned only with the determination of position and its properties; it does not involve measurements, nor calculations made with them. It has not yet been satisfactorily determined what kind of problems are relevant to this geometry of position, or what methods should be used in solving them. Hence, when a problem was recently mentioned, which seemed geometrical but was so constructed that it did not require the measurement of distances, nor did calculation help at all, I had no doubt that it was concerned with the geometry of position, especially as its solution involved only position, and no calculation was of any use." (Leonhard Euler,"Solution of a problem relative to the geometry of position", 1735)

"If in the case of a notion whose specialisations form a continuous manifoldness, one passes from a certain specialisation in a definite way to another, the specialisations passed over form a simply extended manifoldness, whose true character is that in it a continuous progress from a point is possible only on two sides, forward or backwards. If one now supposes that this manifoldness in its turn passes over into another entirely different, and again in a definite way, namely so that each point passes over into a definite point of the other, then all the specialisations so obtained form a doubly extended manifoldness. In a similar manner one obtains a triply extended manifoldness, if one imagines a doubly extended one passing over in a definite way to another entirely different; and it is easy to see how this construction may be continued. If one regards the variable object instead of the determinable notion of it, this construction may be described as a composition of a variability of n + 1 dimensions out of a variability of n dimensions and a variability of one dimension." (Bernhard Riemann, "On the hypotheses which lie at the foundation of geometry", 1854)

"[…] geometry is the art of reasoning well from badly drawn figures; however, these figures, if they are not to deceive us, must satisfy certain conditions; the proportions may be grossly altered, but the relative positions of the different parts must not be upset." (Henri Poincaré, 1895)

26 October 2025

On Algebra (1800-1849)

"It is to be desired, that the charges of paradox and mystery, said to be introduced into algebra by negative and impossible quantities, should be proposed distinctly, in a precise form, fit to be apprehended and made the subject of discussion." (Robert Woodhouse," On the necessary Truth of certain Conclusions obtained by Means of imaginary Quantities", 1801)

"Every negative quantity standing by itself is a mere creature of the mind and [...] those which are met with in calculations are only mere algebraical forms, incapable of representing any thing real and effective." (Lazare Carnot, "Geometrie de Position, 1803)

"Metaphor [...] may be said to be the algebra of language." (Charles C Colton, "Lacon", 1820)

"We may always depend upon it that algebra, which cannot be translated into good English and sound common sense, is bad algebra." (William K Clifford, "The Common Sense of the Exact Sciences", 1823)

"The mathematicians have been very much absorbed with finding the general solution of algebraic equations, and several of them have tried to prove the impossibility of it. However, if I am not mistaken, they have not as yet succeeded. I therefore dare hope that the mathematicians will receive this memoir with good will, for its purpose is to fill this gap in the theory of algebraic equations." (Niels H Abel,"Memoir on algebraic equations, proving the impossibility of a solution of the general equation of the fifth degree", 1824)

"Unless my Algebra deceive me, Unity itself divided by Zero will give Infinity." (Thomas Carlyle, "Sartor Resartus", 1836)

"Arithmetic has for its object the properties of number in the abstract. In algebra, viewed as a science of operations, order is the predominating idea. The business of geometry is with the evolution of the properties of space, or of bodies viewed as existing in space." (James J Sylvester, "A Probationary Lecture on Geometry", 1844)

"The first thing to be attended to in reading any algebraical treatise, is the gaining a perfect understanding of the different processes there exhibited, and of their connection with one another. This cannot be attained by a mere reading of the book, however great the attention which may be given. It is impossible, in a mathematical work, to fill up every process in the manner in which it must be filled up in the mind of the student before he can be said to have completely mastered it. Many results must be given of which the details are suppressed, such are the additions, multiplications, extractions of the square root, etc., with which the investigations abound. These must not be taken on trust by the student, but must be worked by his own pen, which must never be out of his hand, while engaged in any algebraical process." (Augustus de Morgan,"On the Study and Difficulties of Mathematics", 1830)

"Those who can, in common algebra, find a square root of -1, will be at no loss to find a fourth dimension in space in which ABC may become ABCD: or, if they cannot find it, they have but to imagine it, and call it an impossible dimension, subject to all the laws of the three we find possible. And just as √-1 in common algebra, gives all its significant combinations true, so would it be with any number of dimensions of space which the speculator might choose to call into impossible existence." (Augustus De Morgan, "Trigonometry and Double Algebra", 1849)

On Calculus (2010-)

"First, what are the 'graphs' studied in graph theory? They are not graphs of functions as studied in calculus and analytic geometry. They are (usually finite) structures consisting of vertices and edges. As in geometry, we can think of vertices as points (but they are denoted by thick dots in diagrams) and of edges as arcs connecting pairs of distinct vertices. The positions of the vertices and the shapes of the edges are irrelevant: the graph is completely specified by saying which vertices are connected by edges. A common convention is that at most one edge connects a given pair of vertices, so a graph is essentially just a pair of sets: a set of objects." (John Stillwell, "Mathematics and Its History", 2010)

"As geometers study shape, the student of calculus examines change: the mathematics of how an object transforms from one state into another, as when describing the motion of a ball or bullet through space, is rendered pictorial in its graphs’ curves." (Daniel Tammet, "Thinking in Numbers" , 2012)

"It has been said that the three most effective problem-solving devices in mathematics are calculus, complex variables, and the Fourier transform." (Peter D Lax & Lawrence Zalcman, "Complex proofs of real theorems", 2012)

"Mathematics is a technique, a tool, albeit a sophisticated one. Theory is something different. Theory lies in the discovery, understanding, and explaining of phenomena present in the world. Mathematics facilitates this - enormously - but then so does computation. Naturally, there is a difference. Working with equations allows us to follow an argument step by step and reveals conditions a solution must adhere to, whereas computation does not. But computation - and this more than compensates - allows us to see phenomena that equilibrium mathematics does not. It allows us to rerun results under different conditions, exploring when structures appear and don’t appear, isolating underlying mechanisms, and simplifying again and again to extract the bones of a phenomenon. Computation in other words is an aid to thought, and it joins earlier aids in economics - algebra, calculus, statistics, topology, stochastic processes - each of which was resisted in its time. The computer is an exploratory lab for economics, and used skillfully, a powerful generator for theory." (W Brian Arthur, "Complexity and the Economy", 2015)

"[…] the usefulness of mathematics is by no means limited to finite objects or to those that can be represented with a computer. Mathematical concepts depending on the idea of infinity, like real numbers and differential calculus, are useful models for certain aspects of physical reality." (Alfred S Posamentier & Bernd Thaller, "Numbers: Their tales, types, and treasures", 2015) 

"Calculus is the study of things that are changing. It is difficult to make theories about things that are always changing, and calculus accomplishes it by looking at infinitely small portions, and sticking together infinitely many of these infinitely small portions." (Eugenia Cheng, "Beyond Infinity: An Expedition to the Outer Limits of Mathematics", 2017)

"Sometimes mathematical advances happen by just looking at something in a slightly different way, which doesn’t mean building something new or going somewhere different, it just means changing your perspective and opening up huge new possibilities as a result. This particular insight leads to calculus and hence the understanding of anything curved, anything in motion, anything fluid or continuously changing." (Eugenia Cheng, "Beyond Infinity: An Expedition to the Outer Limits of Mathematics", 2017)

"Calculus succeeds by breaking complicated problems down into simpler parts. That strategy, of course, is not unique to calculus. All good problem-solvers know that hard problems become easier when they’re split into chunks. The truly radical and distinctive move of calculus is that it takes this divide-and-conquer strategy to its utmost extreme - all the way out to infinity." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"If real numbers are not real, why do mathematicians love them so much? And why are schoolchildren forced to learn about them? Because calculus needs them. From the beginning, calculus has stubbornly insisted that everything - space and time, matter and energy, all objects that ever have been or will be - should be regarded as continuous. Accordingly, everything can and should be quantified by real numbers. In this idealized, imaginary world, we pretend that everything can be split finer and finer without end. The whole theory of calculus is built on that assumption. Without it, we couldn’t compute limits, and without limits, calculus would come to a clanking halt." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"In mathematics, pendulums stimulated the development of calculus through the riddles they posed. In physics and engineering, pendulums became paradigms of oscillation. […] In some cases, the connections between pendulums and other phenomena are so exact that the same equations can be recycled without change. Only the symbols need to be reinterpreted; the syntax stays the same. It’s as if nature keeps returning to the same motif again and again, a pendular repetition of a pendular theme. For example, the equations for the swinging of a pendulum carry over without change to those for the spinning of generators that produce alternating current and send it to our homes and offices. In honor of that pedigree, electrical engineers refer to their generator equations as swing equations." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"The important point about e is that an exponential function with this base grows at a rate precisely equal to the function itself. Let me say that again. The rate of growth of ex is ex itself. This marvelous property simplifies all calculations about exponential functions when they are expressed in base e. No other base enjoys this simplicity. Whether we are working with derivatives, integrals, differential equations, or any of the other tools of calculus, exponential functions expressed in base e are always the cleanest, most elegant, and most beautiful." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"Thus, calculus proceeds in two phases: cutting and rebuilding. In mathematical terms, the cutting process always involves infinitely fine subtraction, which is used to quantify the differences between the parts. Accordingly, this half of the subject is called differential calculus. The reassembly process always involves infinite addition, which integrates the parts back into the original whole. This half of the subject is called integral calculus." (Steven H Strogatz, "Infinite Powers: The Story of Calculus - The Most Important Discovery in Mathematics", 2019)

"We are accustomed to intellectual diffusion taking place from the natural and physical sciences into the social sciences; certainly that is the direction taken for both calculus and the scientific method. But statistical graphics in particular, and statistics in general, took the reverse route." (Michael Friendly & Howard Wainer, "A History of Data Visualization and Graphic Communication", 2021)

On Calculus (2000-20009)

"Arithmetic and number theory study patterns of number and counting. Geometry studies patterns of shape. Calculus allows us to handle patterns of motion. Logic studies patterns of reasoning. Probability theory deals with patterns of chance. Topology studies patterns of closeness and position." (Keith Devlin, "The Math Gene: How Mathematical Thinking Evolved And Why Numbers Are Like Gossip", 2000)

"The equation e^πi =-1 says that the function w= e^z, when applied to the complex number πi as input, yields the real number -1 as the output, the value of w. In the complex plane, πi is the point [0,π) - π on the i-axis. The function w=e^z maps that point, which is in the z-plane, onto the point (-1, 0) - that is, -1 on the x-axis-in the w-plane. […] But its meaning is not given by the values computed for the function w=e^z. Its meaning is conceptual, not numerical. The importance of  e^πi =-1 lies in what it tells us about how various branches of mathematics are related to one another - how algebra is related to geometry, geometry to trigonometry, calculus to trigonometry, and how the arithmetic of complex numbers relates to all of them." (George Lakoff & Rafael E Nuñez, "Where Mathematics Come From: How the Embodied Mind Brings Mathematics into Being", 2000)

"At present, high school education in some countries covers only little, if any, statistical thinking. Algebra, geometry, and calculus teach thinking in a world of certainty - not in the real world, which is uncertain. [...] Furthermore, in the medical and social sciences, data analysis is typically taught as a set of statistical rituals rather than a set of methods for statistical thinking." (Gerd Gigerenzer, "Calculated Risks: How to know when numbers deceive you", 2002)

"[…] the branch of mathematics which is most concerned with change is calculus. The key idea of calculus is in fact not so much change itself, but rather the rate at which change occurs." (David Acheson, "1089 and All That: A Journey into Mathematics", 2002)

"The incommensurability of the diagonal of a square was initially a problem of measuring length but soon moved to the very theoretical level of introducing irrational numbers. Attempts to compute the length of the circumference of the circle led to the discovery of the mysterious number. Measuring the area enclosed between curves has, to a great extent, inspired the development of calculus." (Heinz-Otto Peitgen et al, "Chaos and Fractals: New Frontiers of Science" 2nd Ed., 2004)

"The calculus is a theory of continuous change - processes that move smoothly and that do not stop, jerk, interrupt themselves, or hurtle over gaps in space and time. The supreme example of a continuous process in nature is represented by the motion of the planets in the night sky as without pause they sweep around the sun in elliptical orbits; but human consciousness is also continuous, the division of experience into separate aspects always coordinated by some underlying form of unity, one that we can barely identify and that we can describe only by calling it continuous." (David Berlinski, "Infinite Ascent: A short history of mathematics", 2005)

"Since the ellipse is a closed curve it has a total length, λ say, and therefore f(l + λ) = f(l). The elliptic function f is periodic, with 'period' λ, just as the sine function is periodic with period 2π. However, as Gauss discovered in 1797, elliptic functions are even more interesting than this: they have a second, complex period. This discovery completely changed the face of calculus, by showing that some functions should be viewed as functions on the plane of complex numbers. And just as periodic functions on the line can be regarded as functions on a periodic line - that is, on the circle - elliptic functions can be regarded as functions on a doubly periodic plane - that is, on a 2-torus." (John Stillwell, "Yearning for the impossible: the surpnsing truths of mathematics", 2006)

"Images and pictures […] have played a key role in shaping our scientific picture of the world. […] Carefully constructed families of pictures can act as a calculus all their own. Like any successful systems of symbols, with an appropriate grammar they enlarge the number of things that we can do without consciously thinking." (John D Barrow, "Cosmic Imagery: Key Images in the History of Science", 2008)

On Calculus (1975-1999)

"Even the simplest calculation in the purest mathematics can have terrible consequences. Without the invention of the infinitesimal calculus most of our technology would have been impossible." (Stanislaw M Ulam, "Adventures of a Mathematician", 1976)

"I would therefore urge that people be introduced to [the logistic equation] early in their mathematical education. This equation can be studied phenomenologically by iterating it on a calculator, or even by hand. Its study does not involve as much conceptual sophistication as does elementary calculus. Such study would greatly enrich the student’s intuition about nonlinear systems. Not only in research but also in the everyday world of politics and economics, we would all be better off if more people realized that simple nonlinear systems do not necessarily possess simple dynamical properties." (Robert M May, "Simple Mathematical Models with Very Complicated Dynamics", Nature Vol. 261 (5560), 1976)

"In comparison with Predicate Calculus encoding s of factual knowledge, semantic nets seem more natural and understandable. This is due to the one-to-one correspondence between nodes and the concepts they denote, to the clustering about a particular node of propositions about a particular thing, and to the visual immediacy of 'interrelationships' between concepts, i.e., their connections via sequences of propositional links." (Lenhart K Schubert, "Extending the Expressive Power of Semantic Networks", Artificial Intelligence 7, 1976)

"The chief difficulty of modern theoretical physics resides not in the fact that it expresses itself almost exclusively in mathematical symbols, but in the psychological difficulty of supposing that complete nonsense can be seriously promulgated and transmitted by persons who have sufficient intelligence of some kind to perform operations in differential and integral calculus […]" (Celia Green, "The Decline and Fall of Science", 1976)

"Because of its foundation in topology, catastrophe theory is qualitative, not quantitative. Just as geometry treated the properties of a triangle without regard to its size, so topology deals with properties that have no magnitude, for example, the property of a given point being inside or outside a closed curve or surface. This property is what topologists call 'invariant' -it does not change even when the curve is distorted. A topologist may work with seven-dimensional space, but he does not and cannot measure (in the ordinary sense) along any of those dimensions. The ability to classify and manipulate all types of form is achieved only by giving up concepts such as size, distance, and rate. So while catastrophe theory is well suited to describe and even to predict the shape of processes, its descriptions and predictions are not quantitative like those of theories built upon calculus. Instead, they are rather like maps without a scale: they tell us that there are mountains to the left, a river to the right, and a cliff somewhere ahead, but not how far away each is, or how large." (Alexander Woodcock & Monte Davis, "Catastrophe Theory", 1978)

"Every discovery, every enlargement of the understanding, begins as an imaginative preconception of what the truth might be. The imaginative preconception - a ‘hypothesis’ - arises by a process as easy or as difficult to understand as any other creative act of mind; it is a brainwave, an inspired guess, a product of a blaze of insight. It comes anyway from within and cannot be achieved by the exercise of any known calculus of discovery. " (Sir Peter B Medawar, "Advice to a Young Scientist", 1979)

"The invention of the differential calculus was based on the recognition that an instantaneous rate is the asymptotic limit of averages in which the time interval involved is systematically shrunk. This is a concept that mathematicians recognized long before they had the skill to actually compute such an asymptotic limit." (Michael Guillen,"Bridges to Infinity: The Human Side of Mathematics", 1983)

"Calculus is the mathematics of change. The mathematics you have learned up to this point has served mainly to describe static (unchanging) situations; the calculus handles dynamic (changing) situations. Change is characteristic of the world." (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"Calculus systematically evades a great deal of numerical calculation." (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"Continuous distributions are basic to the theory of probability and statistics, and the calculus is necessary to handle them with any ease." (Richard Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"Increasingly [...] the application of mathematics to the real world involves discrete mathematics... the nature of the discrete is often most clearly revealed through the continuous models of both calculus and probability. Without continuous mathematics, the study of discrete mathematics soon becomes trivial and very limited. [...] The two topics, discrete and continuous mathematics, are both ill served by being rigidly separated." (Richard W Hamming, "Methods of Mathematics Applied to Calculus, Probability, and Statistics", 1985)

"Mathematics is more than doing calculations, more than solving equations, more than proving theorems, more than doing algebra, geometry or calculus, more than a way of thinking. Mathematics is the design of a snowflake, the curve of a palm frond, the shape of a building, the joy of a game, the frustration of a puzzle, the crest of a wave, the spiral of a spider's web. It is ancient and yet new. Mathematics is linked to so many ideas and aspects of the universe." (Theoni Pappas, "More Joy of Mathematics: Exploring Mathematics All Around You", 1986)

"Central to the development of the calculus were the concepts of convergence and limit, and with these concepts at hand it became at last possible to resolve the ancient paradoxes of infinity which had so much intrigued Zeno." (Eli Maor, "To Infinity and Beyond: A Cultural History of the Infinite", 1987)

"The acceptance of complex numbers into the realm of algebra had an impact on analysis as well. The great success of the differential and integral calculus raised the possibility of extending it to functions of complex variables. Formally, we can extend Euler's definition of a function to complex variables without changing a single word; we merely allow the constants and variables to assume complex values. But from a geometric point of view, such a function cannot be plotted as a graph in a two-dimensional coordinate system because each of the variables now requires for its representation a two-dimensional coordinate system, that is, a plane. To interpret such a function geometrically, we must think of it as a mapping, or transformation, from one plane to another." (Eli Maor, "e: The Story of a Number", 1994)

"The body of mathematics to which the calculus gives rise embodies a certain swashbuckling style of thinking, at once bold and dramatic, given over to large intellectual gestures and indifferent, in large measure, to any very detailed description of the world. It is a style that has shaped the physical but not the biological sciences, and its success in Newtonian mechanics, general relativity and quantum mechanics is among the miracles of mankind. But the era in thought that the calculus made possible is coming to an end. Everyone feels this is so and everyone is right." (David Berlinski, "A Tour of the Calculus", 1995)

"The story of calculus brings out two of the main things that mathematics is for: providing tools that let scientists calculate what nature is doing, and providing new questions for mathematicians to sort out to their own satisfaction. These are the external and internal aspects of mathematics, often referred to as applied and pure mathematics." (Ian Stewart, "Nature's Numbers: The unreal reality of mathematics", 1995)

"When it comes to modeling processes that are manifestly governed by nonlinear relationships among the system components, we can appeal to the same general idea. Calculus tells us that we should expect most systems to be 'locally' flat; that is, locally linear. So a conservative modeler would try to extend the word 'local' to hold for the region of interest and would take this extension seriously until it was shown to be no longer valid." (John L Casti, "Five Golden Rules", 1995)

"By studying analytic functions using power series, the algebra of the Middle Ages was connected to infinite operations (various algebraic operations with infinite series). The relation of algebra with infinite operations was later merged with the newly developed differential and integral calculus. These developments gave impetus to early stages of the development of analysis. In a way, we can say that analyticity is the notion that first crossed the boundary from finite to infinite by passing from polynomials to infinite series. However, algebraic properties of polynomial functions still are strongly present in analytic functions." (Kenji Ueno & Toshikazu Sunada, "A Mathematical Gift, III: The Interplay Between Topology, Functions, Geometry, and Algebra", Mathematical World Vol. 23, 1996

"While calculus is the mathematical key to an understanding of Nature, its roots lie really in problems of geometry." (David Acheson, "From Calculus to Chaos: An Introduction to Dynamics", 1997)

"In fact the complex numbers form a field. [...] So however strange you may feel the very notion of a complex number to be, it does turn out to provide a 'normal' type of arithmetic. In fact it gives you a tremendous bonus not available with any of the other number systems. [...] The fundamental theorem of algebra is just one of several reasons why the complex-number system is such a 'nice' one. Another important reason is that the field of complex numbers supports the development of a powerful differential calculus, leading to the rich theory of functions of a complex variable." (Keith Devlin, "Mathematics: The New Golden Age", 1998)

"Mathematics, in the common lay view, is a static discipline based on formulas taught in the school subjects of arithmetic, geometry, algebra, and calculus. But outside public view, mathematics continues to grow at a rapid rate, spreading into new fields and spawning new applications. The guide to this growth is not calculation and formulas but an open-ended search for pattern." (Lynn A Steen, "The Future of Mathematics Education", 1998)

"The whole apparatus of the calculus takes on an entirely different form when developed for the complex numbers." (Keith Devlin, "Mathematics: The New Golden Age", 1998)

On Calculus (1950-1974)

"In the mathematical theory of the maximum and minimum problems in calculus of variations, different methods are employed. The old classical method consists in finding criteria -as to whether or not for a given curve the corresponding number assumes a maximum or minimum. In order to find such criteria a considered curve is a little varied, and it is from this method that the name 'calculus of variations' for the whole branch of mathematics is derived." (Karl Menger, "What Is Calculus of Variations and What Are Its Applications?" [James R Newman, "The World of Mathematics" Vol. II], 1956)

"We frequently find that nature acts in such a way as to minimize certain magnitudes. The soap film will take the shape of a surface of smallest area. Light always follows the shortest path, that is, the straight line, and, even when reflected or broken, follows a path which takes a minimum of time. In mechanical systems we find that the movements actually take place in a form which requires less effort in a certain sense than any other possible movement would use. There was a period, about 150 years ago, when physicists believed that the whole of physics might be deduced from certain minimizing principles, subject to calculus of variations, and these principles were interpreted as tendencies--so to say, economical tendencies of nature. Nature seems to follow the tendency of economizing certain magnitudes, of obtaining maximum effects with given means, or to spend minimal means for given effects." (Karl Menger, "What Is Calculus of Variations and What Are Its Applications?" [James R Newman, "The World of Mathematics" Vol. II], 1956)

"While the minimum and maximum problems of calculus of variations correspond to the problem in the ordinary calculus of finding peaks and pits of a surface, the minimax problems correspond to the problem of finding the saddle points of the surface (the passes of a mountain)."(Karl Menger, "What Is Calculus of Variations and What Are Its Applications?" [James R Newman, "The World of Mathematics" Vol. II], 1956)

"As the sensations of motion and discreteness led to the abstract notions of the calculus, so may sensory experience continue thus to suggest problem for the mathematician, and so may she in turn be free to reduce these to the basic formal logical relationships involved. Thus only may be fully appreciated the twofold aspect of mathematics: as the language of a descriptive interpretation of the relationships discovered in natural phenomena, and as a syllogistic elaboration of arbitrary premise." (Carl B Boyer, "The History of the Calculus and Its Conceptual Development", 1959)

"Just as no thing or organism exists on its own, it does not act on its own. Furthermore, every organism is a process: thus the organism is not other than its actions. To put it clumsily: it is what it does. More precisely, the organism, including its behavior, is a process which is to be understood only in relation to the larger and longer process of its environment. For what we mean by 'understanding' or 'comprehension' is seeing how parts fit into a whole, and then realizing that they don't compose the whole, as one assembles a jigsaw puzzle, but that the whole is a pattern, a complex wiggliness, which has no separate parts. Parts are fictions of language, of the calculus of looking at the world through a net which seems to chop it up into bits. Parts exist only for purposes of figuring and describing, and as we figure the world out we become confused if we do not remember this all the time." (Alan Watts, "The Book on the Taboo Against Knowing Who You Are", 1966)

"The mathematical models for many physical systems have manifolds as the basic objects of study, upon which further structure may be defined to obtain whatever system is in question. The concept generalizes and includes the special cases of the cartesian line, plane, space, and the surfaces which are studied in advanced calculus. The theory of these spaces which generalizes to manifolds includes the ideas of differentiable functions, smooth curves, tangent vectors, and vector fields. However, the notions of distance between points and straight lines (or shortest paths) are not part of the idea of a manifold but arise as consequences of additional structure, which may or may not be assumed and in any case is not unique." (Richard L Bishop & Samuel I Goldberg, "Tensor Analysis on Manifolds", 1968)

"The two problems of tangent construction and area evaluation, which previously bore a relation to each other no closer than that of a similarity of type, were now twins, linked by an 'inversion principle'; the powerful algebraic calculus allowed the mathematician to move easily along a whole chain of integrations and differentiations of a function according to his needs. But with power there is always responsibility; and in this case the limitation was that every operation must take place on a function which obeyed a 'law of continuity' (that is, of differentiability). Thus the calculus was understood to operate validly only on those functions which fulfilled these conditions, and they were the differentiable functions: polynomials, trigonometric and exponential functions, and all such algebraic expressions which yielded a definite result from each operation of the calculus." (Ivor Grattan-Guinness, "The Development of the Foundations of Mathematical Analysis from Euler to Riemann", 1970)

"Specifically, it seems to me preferable to use, systematically: 'random' for that which is the object of the theory of probability […]; I will therefore say random process, not stochastic process. 'stochastic' for that which is valid 'in the sense of the calculus of probability': for instance; stochastic independence, stochastic convergence, stochastic integral; more generally, stochastic property, stochastic models, stochastic interpretation, stochastic laws; or also, stochastic matrix, stochastic distribution, etc. As for 'chance', it is perhaps better to reserve it for less technical use: in the familiar sense of'by chance', 'not for a known or imaginable reason', or (but in this case we should give notice of the fact) in the sense of, 'with equal probability' as in 'chance drawings from an urn', 'chance subdivision', and similar examples." (Bruno de Finetti, "Theory of Probability", 1974)

"The calculus of probability can say absolutely nothing about reality [...] We have to stress this point because these attempts assume many forms and are always dangerous. In one sentence: to make a mistake of this kind leaves one inevitably faced with all sorts of fallacious arguments and contradictions whenever an attempt is made to state, on the basis of probabilistic considerations, that something must occur, or that its occurrence confirms or disproves some probabilistic assumptions." (Bruno de Finetti, "Theory of Probability", 1974)

On Calculus (1925-1949)

"The rational concept of probability, which is the only basis of probability calculus, applies only to problems in which either the same event repeats itself again and again, or a great number of uniform elements are involved at the same time. Using the language of physics, we may say that in order to apply the theory of probability we must have a practically unlimited sequence of uniform observations." (Richard von Mises, "Probability, Statistics and Truth", 1928)

"The result of each calculation appertaining to the field of probability is always, as far as our theory goes, nothing else but a probability, or, using our general definition, the relative frequency of a certain event in a sufficiently long (theoretically, infinitely long) sequence of observations. The theory of probability can never lead to a definite statement concerning a single event. The only question that it can answer is: what is to be expected in the course of a very long sequence of observations? It is important to note that this statement remains valid also if the calculated probability has one of the two extreme values 1 or 0." (Richard von Mises, "Probability, Statistics and Truth", 1928)

"The most important application of the theory of probability is to what we may call 'chance-like' or 'random' events, or occurrences. These seem to be characterized by a peculiar kind of incalculability which makes one disposed to believe - after many unsuccessful attempts - that all known rational methods of prediction must fail in their case. We have, as it were, the feeling that not a scientist but only a prophet could predict them. And yet, it is just this incalculability that makes us conclude that the calculus of probability can be applied to these events." (Karl R Popper, "The Logic of Scientific Discovery", 1934)

"An incontestable claim of mathematics to importance in our civilization is that it is indispensable in a scientific explanation of what we observe in nature, i.e., the phenomena of nature. Of the several fields of elementary mathematics, the calculus may be called the motion-picture machine of mathematics which catches natural phenomena in the act of changing, or, as Newton called it, in a state of flux. Other fields of mathematics are to be likened to the camera which shows a still picture (of nature) as it appears at a given instant without regard to the possible appearance the following instant." (Mayme I Logsdon, "A Mathematician Explains", 1935)

"The underlying notion of the integral calculus is also that of finding a limiting value, but this time it is the limiting value of a sum of terms when the number of terms increases without bound at the same time that the numerical value of each term approaches Zero. The area bounded by one or more curves is found as the limiting value of a sum of small rectangles; the length of an arc of a curve is found as the limiting value of a sum of lengths of straight lines (chords of the arc); the volume of a solid bounded by one or more curved surfaces is found as the limiting value of a sum of volumes of small solids bounded by planes; etc." (Mayme I Logsdon, "A Mathematician Explains", 1935)

"It is a curious fact in the history of mathematics that discoveries of the greatest importance were made simultaneously by different men of genius. The classical example is the […] development of the infinitesimal calculus by Newton and Leibniz. Another case is the development of vector calculus in Grassmann's Ausdehnungslehre and Hamilton's Calculus of Quaternions. In the same way we find analytic geometry simultaneously developed by Fermat and Descartes." (Julian L Coolidge, "A History of Geometrical Methods", 1940)

"The curves treated by the calculus are normal and healthy; they possess no idiosyncrasies. But mathematicians would not be happy merely with simple, lusty configurations. Beyond these their curiosity extends to psychopathic patients, each of whom has an individual case history resembling no other; these are the pathological curves in mathematics." (Edward Kasner & James R Newman, "Mathematics and the Imagination", 1940)

"A mathematician is not a man who can readily manipulate figures; often he cannot. He is not even a man who can readily perform the transformations of equations by the use of calculus. He is primarily an individual who is skilled in the use of symbolic logic on a high plane, and especially he is a man of intuitive judgment in the choice of the manipulative processes he employs." (Vannevar Bush, "As We May Think", 1945)

"The calculus was the first achievement of modern mathematics and it is difficult to overestimate its importance. I think it defines more unequivocally than anything else the inception of modern mathematics; and the system of mathematical analysis, which is its logical development, still constitutes the greatest technical advance in exact thinking." (John von Neumann, "The Mathematician" [in "Works of the Mind" Vol. I, 1947])

"Unfortunately, the mechanical way in which calculus sometimes is taught fails to present the subject as the outcome of a dramatic intellectual struggle which has lasted for twenty-five hundred years or more, which is deeply rooted in many phases of human endeavors and which will continue as long as man strives to understand himself as well as nature. Teachers, students, and scholars who really want to comprehend the forces and appearances of science must have some understanding of the present aspect of knowledge as a result of historical evolution." (Richard Curand [forward to Carl B Boyer’s "The History of the Calculus and Its Conceptual Development", 1949])

On Calculus (1900-1924)

"Every one who understands the subject will agree that even the basis on which the scientific explanation of nature rests, is intelligible only to those who have learned at least the elements of the differential and integral calculus, as well as of analytical geometry." (Felix Klein, Jahresbericht der Deutschen Mathematiker Vereinigung Vol. 11, 1902)

"All the modern higher mathematics is based on a calculus of operations, on laws of thought. All mathematics, from the first, was so in reality; but the evolvers of the modern higher calculus have known that it is so. Therefore elementary teachers who, at the present day, persist in thinking about algebra and arithmetic as dealing with laws of number, and about geometry as dealing with laws of surface and solid content, are doing the best that in them lies to put their pupils on the wrong track for reaching in the future any true understanding of the higher algebras. Algebras deal not with laws of number, but with such laws of the human thinking machinery as have been discovered in the course of investigations on numbers. Plane geometry deals with such laws of thought as were discovered by men intent on finding out how to measure surface; and solid geometry with such additional laws of thought as were discovered when men began to extend geometry into three dimensions." (Mary E Boole, "Lectures on the Logic of Arithmetic", 1903)

"But in the mathematical or pure sciences, - geometry, arithmetic, algebra, trigonometry, the calculus of variations or of curves, - we know at least that there is not, and cannot be, error in our first principles, and we may therefore fasten our whole attention upon the processes. As mere exercises in logic, therefore, these sciences, based as they all are on primary truths relating to space and number, have always been supposed to furnish the most exact discipline." (Joshua Fitch,"Lectures on Teaching", 1906)

"The power of differential calculus is that it linearizes all problems by going back to the 'infinitesimally small', but this process can be used only on smooth manifolds. Thus our distinction between the two senses of rotation on a smooth manifold rests on the fact that a continuously differentiable coordinate transformation leaving the origin fixed can be approximated by a linear transformation at О and one separates the (nondegenerate) homogeneous linear transformations into positive and negative according to the sign of their determinants. Also the invariance of the dimension for a smooth manifold follows simply from the fact that a linear substitution which has an inverse preserves the number of variables." (Hermann Weyl, "The Concept of a Riemann Surface", 1913)

"The very name calculus of probabilities is a paradox. Probability opposed to certainty is what we do not know, and how can we calculate what we do not know?" (Henri Poincaré, "The Foundations of Science", 1913)

"The question whether any branch of science can ever become purely deductive is easily answered. It cannot. If science deals with the external world, as we believe it does, and not merely with the relations of propositions then no branch of science can ever be purely deductive. Deductive reasoning by itself can never tell us about facts. The use of deduction in science is to serve as a calculus to make our observations go further, not to take the place of observation." (Arthur D Ritchie, "Scientific Method: An Inquiry into the Character and Validity of Natural Laws", 1923)

Related Posts Plugin for WordPress, Blogger...

On Game Theory (2000-)

"An equilibrium is not always an optimum; it might not even be good. This may be the most important discovery of game theory." (Iv...