"Mathematicks therefore is a Science which teaches or contemplates whatever is capable of Measure or Number as such. When it relates to Number, it is called Arithmetick; but when to measure, as Length, Breadth, Depth, Degrees of Velocity in Motion, Intenseness or Remissness of Sounds, Augmentation or Diminution of Quality, etc. it is called Geometry." (Jacques Ozanam, "A Mathematical Dictionary: Or; A Compendious Explication of All Mathematical Terms", 1702)
"The Essential Parts of the Simple or Pure Mathematicks are Arithmetick and Geometry, which mutually assist one another, and are independent on any other Sciences, except perhaps on Artificial Logick: But doubtless Natural Logick may be sufficient to a Man of Sense. The other parts are chiefly Physical Subjects explained by the Principles of Arithmetics or Geometry." (Jacques Ozanam, "A Mathematical Dictionary: Or; A Compendious Explication of All Mathematical Terms", 1702)
"Equations are Expressions of Arithmetical Computation, and properly have no place in Geometry, except as far as Quantities truly Geometrical (that is, Lines, Surfaces, Solids, and Proportions) may be said to be some equal to others. Multiplications, Divisions, and such sort of Computations, are newly received into Geometry, and that unwarily, and contrary to the first Design of this Science. For whosoever considers the Construction of a Problem by a right Line and a Circle, found out by the first Geometricians, will easily perceive that Geometry was invented that we might expeditiously avoid, by drawing Lines, the Tediousness of Computation. Therefore these two Sciences ought not to be confounded. The Ancients did so industriously distinguish them from one another, that they never introduced Arithmetical Terms into Geometry. And the Moderns, by confounding both, have lost the Simplicity in which all the Elegance of Geometry consists. Wherefore that is Arithmetically more simple which is determined by the more simple Equation, but that is Geometrically more simple which is determined by the more simple drawing of Lines; and in Geometry, that ought to be reckoned best which is geometrically most simple." (Isaac Newton, "Universal Arithmetic", 1707)
"Music is a hidden arithmetic exercise of the soul, which does not know that it is counting."
["Musica est exercitium arithmeticae occultum nescientis se numerare animi."] (Gottfried Leibniz, [Letter to Christian Goldbach], 1712)
"As arithmetic and algebra are sciences of great clearness, certainty, and extent, which are immediately conversant about signs, upon the skillful use whereof they entirely depend, so a little attention to them may possibly help us to judge of the progress of the mind in other sciences, which, though differing in nature, design, and object, may yet agree in the general methods of proof and inquiry." (George Berkeley, "Alciphorn: or, the Minute Philosopher", 1732)
"Now as to what pertains to these Surd numbers (which, as it were by way of reproach and calumny, having no merit of their own are also styled Irrational, Irregular, and Inexplicable) they are by many denied to be numbers properly speaking, and are wont to be banished from arithmetic to another Science, (which yet is no science) viz. algebra." (Isaac Barrow, "Mathematical Lectures", 1734)
"Arithmetic and geometry, those wings on which the astronomer soars as high as heaven." (Robert Boyle, "Usefulness of Mathematics to Natural Philosophy", 1744)
"[...] the ideas which these sciences [Geometry, Theoretical Arithmetic and Algebra] involve extend to all objects and changes which we observe in the external world; and hence the consideration of mathematical relations forms a large portion of many of the sciences which treat of the phenomena and laws of external nature, as Astronomy, Optics, and Mechanics. Such sciences are hence often termed Mixed Mathematics, the relations of space and number being, in these branches of knowledge, combined with principles collected from special observation; while Geometry, Algebra, and the like subjects, which involve no result of experience, are called Pure Mathematics." (William Whewell, "The Philosophy of the Inductive Sciences Founded Upon Their History" Vol. 1, 1747)
"Algebra is a general Method of Computation by certain Signs and Symbols which have been contrived for this Purpose, and found convenient. It is called an Universal Arithmetic, and proceeds by Operations and Rules similar to those in Common Arithmetic, founded upon the same Principles." (Colin Maclaurin, "A Treatise on Algebra", 1748)
No comments:
Post a Comment