"Arithmetic and number theory study patterns of number and counting. Geometry studies patterns of shape. Calculus allows us to handle patterns of motion. Logic studies patterns of reasoning. Probability theory deals with patterns of chance. Topology studies patterns of closeness and position." (Keith Devlin, "The Math Gene: How Mathematical Thinking Evolved And Why Numbers Are Like Gossip", 2000)
"An organizing frame provides a topology for the space it organizes; that is, it provides a set of organizing relations among the elements in space. When two spaces share the same organizing frame, they share the corresponding topology and so can easily be put into correspondence. Establishing a cross-space mapping between inputs becomes straightforward." (Gilles Fauconnier, "The Way We Think: Conceptual Blending and The Mind's Hidden Complexities", 2002)
"Networks are not en route from a random to an ordered state. Neither are they at the edge of randomness and chaos. Rather, the scale-free topology is evidence of organizing principles acting at each stage of the network formation process." 
"Today, the whole subject of geometry extends way beyond the world of right-angled triangles, circles and so on. There are even branches of the subject in which the ideas of length, angle and area don’t really feature at all. One of these is topology – a sort of rubber-sheet geometry – where a recurring question is whether some geometric object can be deformed ‘smoothly’ into another one." (David Acheson, "1089 and All That: A Journey into Mathematics", 2002)
"[…] it is useful to note that there are three basic network topologies. First, there are line or chain networks with many nodes that are spread out in more or less linear fashion. Second, there are star or hub networks, where most important relationships move through a central hub or hubs. Third, there are all-channel networks, in which communications proceed in more or less all directions across the network simultaneously […]." (John Urry, "Global Complexity", 2003)
"[…] topology, the study of continuous shape, a kind of generalized geometry where rigidity is replaced by elasticity. It's as if everything is made of rubber. Shapes can be continuously deformed, bent, or twisted, but not cut - that's never allowed. A square is topologically equivalent to a circle, because you can round off the corners. On the other hand, a circle is different from a figure eight, because there's no way to get rid of the crossing point without resorting to scissors. In that sense, topology is ideal for sorting shapes into broad classes, based on their pure connectivity."
"If mathematics is a language, then taking a topology course at the undergraduate level is cramming vocabulary and memorizing irregular verbs: a necessary, but not always exciting exercise one has to go through before one can read great works of literature in the original language, whose beauty eventually - in retrospect - compensates for all the drudgery." (Volker Runde, "A Taste of Topology", 2005)
"Quantum physics, in particular particle and string theory, has proven to be a remarkable fruitful source of inspiration for new topological invariants of knots and manifolds. With hindsight this should perhaps not come as a complete surprise. Roughly one can say that quantum theory takes a geometric object (a manifold, a knot, a map) and associates to it a (complex) number, that represents the probability amplitude for a certain physical process represented by the object." (Robbert Dijkgraaf, "Mathematical Structures", 2005)
"When the graph is embedded within a surface it is called a map. The nature of the surface needed to embed the graph without cross-ing edges is a topological feature, and the topological structure of this payoff space is not only useful, but also beautiful." (David Robinson & David Goforth, "The Topology of the 2×2 Games: A New Periodic Table", 2005)
"Physics reduces Moonshine to a duality between two different pictures of quantum field theory: the Hamiltonian one, which concretely gives us from representation theory the graded vector spaces, and another, due to Feynman, which manifestly gives us modularity. In particular, physics tells us that this modularity is a topological effect, and the group SL2(Z) directly arises in its familiar role as the modular group of the torus." (Terry Gannon, "Moonshine Beyond the Monster: The Bridge Connecting Algebra, Modular Forms and Physics", 2006)
"Topology is the study of geometric objects as they are transformed by continuous deformations. To a topologist the general shape of the objects is of more importance than distance, size, or angle." 
"Enabling insight into large and complex datasets is a prevalent theme in current visualization research for which different approaches are pursued. Topology-based methods are built on the idea of abstracting characteristic structures such as the topological skeleton from the data and to construct the visualization accordingly." (Helwig Hauser et al [Eds.], "Topology-based Methods in Visualization", 2007)
"Networks may also be important in terms of view. Many models assume that agents are bunched together on the head of a pin, whereas the reality is that most agents exist within a topology of connections to other agents, and such connections may have an important influence on behavior. […] Models that ignore networks, that is, that assume all activity takes place on the head of a pin, can easily suppress some of the most interesting aspects of the world around us. In a pinhead world, there is no segregation, and majority rule leads to complete conformity - outcomes that, while easy to derive, are of little use." (John H Miller & Scott E Page, "Complex Adaptive Systems", 2007)
"Topology allows the possibility of making qualitative predictions when quantitative ones are impossible." (Timothy Gowers, "The Princeton Companion to Mathematics", 2008)
"Topology makes it possible to explain the general structure of the set of solutions without even knowing their analytic expression." (Michael I. Monastyrsky, "Riemann, Topology, and Physics" 2nd Ed., 2008)
"For the study of the topology of the interactions of a complex system it is of central importance to have proper random null models of networks, i.e., models of how a graph arises from a random process. Such models are needed for comparison with real world data. When analyzing the structure of real world networks, the null hypothesis shall always be that the link structure is due to chance alone. This null hypothesis may only be rejected if the link structure found differs significantly from an expectation value obtained from a random model. Any deviation from the random null model must be explained by non-random processes." (Jörg Reichardt, "Structure in Complex Networks", 2009)
"Practically every complex system can be imagined as a network. Atoms form a network making macromolecules. Proteins form a network making cells. Cells form a network making organs and bodies. We form a network making our societies, and so on. Most of these networks are a result of self-organization. In fact, self-organization seems to be an inherent property of matter in our Universe. The resulting networks have a lot of common features, from their topology to their dynamism." (Péter Csermely, "Weak Links: The Universal Key to the Stabilityof Networks and Complex Systems", 2009)
"Scale-free topologies enable more sensitive responses to various changes than those allowed by random networks (Bar-Yam and Epstein, 2004). This can be a very important property for explaining why scale-free networks have been selected and maintained in many systems." (Péter Csermely, "Weak Links: The Universal Key to the Stabilityof Networks and Complex Systems", 2009)
"The idea of Morse theory is that the topology/geometry of a manifold can be understood by examining the smooth functions (and their singularities) on that manifold." (Steven G Krantz, "The Proof is in the Pudding", 2007)
"The most fundamental tool in the subject of point-set topology is the homeomorphism. This is the device by means of which we measure the equivalence of topological spaces." (Steven G Krantz, "Essentials of Topology with Applications”, 2009)
"Topology is a child of twentieth century mathematical thinking. It allows us to consider the shape and structure of an object without being wedded to its size or to the distances between its component parts. Knot theory, homotopy theory, homology theory, and shape theory are all part of basic topology. It is often quipped that a topologist does not know the difference between his coffee cup and his donut - because each has the same abstract 'shape' without looking at all alike." (Steven G Krantz, "Essentials of Topology with Applications”, 2009)
"Topology is geometry without distance or angle. The geometrical objects of study, not rigid but rather made of rubber or elastic, are especially stretchy." (Stephen Huggett & David Jordan, “A Topological Aperitif”, 2009)
No comments:
Post a Comment