"A crucial difference between topology and geometry lies in the set of allowable transformations. In topology, the set of allowable transformations is much larger and conceptually much richer than is the set of Euclidean transformations. All Euclidean transformations are topological transformations, but most topological transformations are not Euclidean. Similarly, the sets of transformations that define other geometries are also topological transformations, but many topological transformations have no counterpart in these geometries. It is in this sense that topology is a generalization of geometry."
"A topological property is, therefore, any property that is preserved under the set of all homeomorphisms. […] Homeomorphisms generally fail to preserve distances between points, and they may even fail to preserve shapes." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)
"Although topology grew out of geometry - at least in the sense that it was initially concerned with sets of geometric points - it quickly evolved to include the study of sets for which no geometric representation is possible. This does not mean that topological results do not apply to geometric objects. They do. Instead, it means that topological results apply to a very wide class of mathematical objects, only some of which have a geometric interpretation." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)
"In each branch of mathematics it is essential to recognize when two structures are equivalent. For example two sets are equivalent, as far as set theory is concerned, if there exists a bijective function which maps one set onto the other. Two groups are equivalent, known as isomorphic, if there exists a a homomorphism of one to the other which is one-to-one and onto. Two topological spaces are equivalent, known as homeomorphic, if there exists a homeomorphism of one onto the other." (Sydney A Morris, "Topology without Tears", 2011)
"[…] topologies are determined by the way the neighborhoods are defined. Neighborhoods, not individual points, are what matter. They determine the topological structure of the parent set. In fact, in topology, the word point conveys very little information at all." 
"What distinguishes topological transformations from geometric ones is that topological transformations are more 'primitive'. They retain only the most basic properties of the sets of points on which they act." (John Tabak, "Beyond Geometry: A new mathematics of space and form", 2011)
"Intersections of lines, for example, remain intersections, and the hole in a torus (doughnut) cannot be transformed away. Thus a doughnut may be transformed topologically into a coffee cup (the hole turning into a handle) but never into a pancake. Topology, then, is really a mathematics of relationships, of unchangeable, or 'invariant', patterns." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)
"Topology is a geometry in which all lengths, angles, and areas can be distorted at will. Thus a triangle can be continuously transformed into a rectangle, the rectangle into a square, the square into a circle, and so on. Similarly, a cube can be transformed into a cylinder, the cylinder into a cone, the cone into a sphere. Because of these continuous transformations, topology is known popularly as 'rubber sheet geometry'. All figures that can be transformed into each other by continuous bending, stretching, and twisting are called 'topologically equivalent'." (Fritjof Capra, "The Systems View of Life: A Unifying Vision", 2014)
"[…] topology is concerned precisely with those properties of geometric figures that do not change when the figures are transformed. Intersections of lines, for example, remain intersections, and the hole in a torus (doughnut) cannot be transformed away. Thus a doughnut may be transformed topologically into a coffee cup (the hole turning into a handle) but never into a pancake. Topology, then, is really a mathematics of relationships, of unchangeable, or 'invariant', patterns."
"Mathematics is a technique, a tool, albeit a sophisticated one. Theory is something different. Theory lies in the discovery, understanding, and explaining of phenomena present in the world. Mathematics facilitates this - enormously - but then so does computation. Naturally, there is a difference. Working with equations allows us to follow an argument step by step and reveals conditions a solution must adhere to, whereas computation does not. But computation - and this more than compensates - allows us to see phenomena that equilibrium mathematics does not. It allows us to rerun results under different conditions, exploring when structures appear and don’t appear, isolating underlying mechanisms, and simplifying again and again to extract the bones of a phenomenon. Computation in other words is an aid to thought, and it joins earlier aids in economics - algebra, calculus, statistics, topology, stochastic processes - each of which was resisted in its time. The computer is an exploratory lab for economics, and used skillfully, a powerful generator for theory." (W Brian Arthur, "Complexity and the Economy", 2015)
"The primary aspects of the theory of complex manifolds are the geometric structure itself, its topological structure, coordinate systems, etc., and holomorphic functions and mappings and their properties. Algebraic geometry over the complex number field uses polynomial and rational functions of complex variables as the primary tools, but the underlying topological structures are similar to those that appear in complex manifold theory, and the nature of singularities in both the analytic and algebraic settings is also structurally very similar." (Raymond O Wells Jr, "Differential and Complex Geometry: Origins, Abstractions and Embeddings", 2017)
"At first, topology can seem like an unusually imprecise branch of mathematics. It’s the study of squishy play-dough shapes capable of bending, stretching and compressing without limit. But topologists do have some restrictions: They cannot create or destroy holes within shapes. […] While this might seem like a far cry from the rigors of algebra, a powerful idea called homology helps mathematicians connect these two worlds. […] homology infers an object’s holes from its boundaries, a more precise mathematical concept. To study the holes in an object, mathematicians only need information about its boundaries." (Kelsey Houston-Edwards, "How Mathematicians Use Homology to Make Sense of Topology", Quanta Magazine, 2021)
"In geometry, shapes like circles and polyhedra are rigid objects; the tools of the trade are lengths, angles and areas. But in topology, shapes are flexible things, as if made from rubber. A topologist is free to stretch and twist a shape. Even cutting and gluing are allowed, as long as the cut is precisely reglued. A sphere and a cube are distinct geometric objects, but to a topologist, they’re indistinguishable." (David E Richeson, "Topology 101: The Hole Truth", 2021)
No comments:
Post a Comment